好问题!我编写了一个简短的函数来将目录转换为数字计数的 HEALPix 地图:
from astropy.coordinates import SkyCoord
import healpy as hp
import numpy as np
def cat2hpx(lon, lat, nside, radec=True):
"""
Convert a catalogue to a HEALPix map of number counts per resolution
element.
Parameters
----------
lon, lat : (ndarray, ndarray)
Coordinates of the sources in degree. If radec=True, assume input is in the icrs
coordinate system. Otherwise assume input is glon, glat
nside : int
HEALPix nside of the target map
radec : bool
Switch between R.A./Dec and glon/glat as input coordinate system.
Return
------
hpx_map : ndarray
HEALPix map of the catalogue number counts in Galactic coordinates
"""
npix = hp.nside2npix(nside)
if radec:
eq = SkyCoord(lon, lat, 'icrs', unit='deg')
l, b = eq.galactic.l.value, eq.galactic.b.value
else:
l, b = lon, lat
# conver to theta, phi
theta = np.radians(90. - b)
phi = np.radians(l)
# convert to HEALPix indices
indices = hp.ang2pix(nside, theta, phi)
idx, counts = np.unique(indices, return_counts=True)
# fill the fullsky map
hpx_map = np.zeros(npix, dtype=int)
hpx_map[idx] = counts
return hpx_map
然后,您可以使用它来填充 HEALPIx 地图:
l = np.random.uniform(-180, 180, 20000)
b = np.random.uniform(-90, 90, 20000)
hpx_map = hpx.cat2hpx(l, b, nside=32, radec=False)
在这里,nside
确定您的像素网格的精细或粗糙程度。
hp.mollview(np.log10(hpx_map+1))
另请注意,通过在银河纬度均匀采样,您会更喜欢银河两极的数据点。如果你想避免这种情况,你可以用余弦来缩小它。
hp.orthview(np.log10(hpx_map+1), rot=[0, 90])
hp.graticule(color='white')