我正在运行LBP
算法来images
按它们的纹理特征进行分类。分类方法LinearSVC
在sklearn.svm
包中。
得到直方图和拟合已经完成,SVM
但有时length
取决于histogram
.image
示例如下:
from skimage import feature
from scipy.stats import itemfreq
from sklearn.svm import LinearSVC
import numpy as np
import cv2
import cvutils
import csv
import os
def __get_hist(image, radius):
NumPoint = radius*8
lbp = feature.local_binary_pattern(image, NumPoint, radius, method="uniform")
x = itemfreq(lbp.ravel())
hist = x[:,1]/sum(x[:,1])
return hist
def get_trainHist_list(train_txt):
train_dic = {}
with open(train_txt, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter = ' ')
for row in reader:
train_dic[row[0]] = int(row[1])
hist_list=[]
key_list=[]
label_list=[]
for key, label in train_dic.items():
img = cv2.imread("D:/Python36/images/texture/%s" %key, cv2.IMREAD_GRAYSCALE)
key_list.append(key)
label_list.append(label)
hist_list.append(__get_hist(img,3))
bundle = [np.array(key_list), np.array(label_list), np.array(hist_list)]
return bundle
train_txt = 'D:/Python36/images/class_train.txt'
train_hist = get_trainHist_list(train_txt)
model = LinearSVC(C=100.0, random_state=42)
model.fit(train_hist[2], train_hist[1])
for i in train_hist[2]:
print(len(i))
test_img = cv2.imread("D:/Python36/images/texture_test/flat-3.png", cv2.IMREAD_GRAYSCALE)
hist= np.array(__get_hist(test_img, 3))
print(len(hist))
prediction = model.predict([hist])
print(prediction)
结果
26
26
26
26
26
26
25
Traceback (most recent call last):
File "D:\Python36\texture.py", line 44, in <module>
prediction = model.predict([hist])
File "D:\Python36\lib\site-packages\sklearn\linear_model\base.py", line 324, in predict
scores = self.decision_function(X)
File "D:\Python36\lib\site-packages\sklearn\linear_model\base.py", line 305, in decision_function
% (X.shape[1], n_features))
ValueError: X has 25 features per sample; expecting 26
如您所见,length
of histogram
fortraining images
全部为 26,但test_img
's 为 25。因此,predict
inSVM
不起作用。
我猜test_img
在 中有空的部分histogram
,空的部分可能已经跳过了。(我不知道)
有人有想法修复它吗?