2

我正在处理单细胞 RNA 测序数据,这些数据是最近 10k-100k 个样本(cells)x 20kgene个稀疏值的特征(s),还包括很多元数据,例如组织(“大脑”与“肝脏” “) 起源。元数据是 ~10-100 列,我存储为pandas.DataFrame. 现在,我正在xarray.DataSets通过 dict-ifiying 元数据并将它们添加为坐标来制作。因为我在笔记本之间复制片段,所以它看起来很笨重且容易出错。有没有更简单的方法?

cell_metadata_dict = cell_metadata.to_dict(orient='list')
coords = {k: ('cell', v) for k, v in cell_metadata_dict.items()}
coords.update(dict(gene=counts.columns, cell=counts.index))

ds = xr.Dataset(
    {'counts': (['cell', 'gene'], counts),
    },
    coords=coords)

编辑:

为了显示一些示例数据,这里是cell_metadata.head().to_csv()

cell,Uniquely mapped reads number,Number of input reads,EXP_ID,TAXON,WELL_MAPPING,Lysis Plate Batch,dNTP.batch,oligodT.order.no,plate.type,preparation.site,date.prepared,date.sorted,tissue,subtissue,mouse.id,FACS.selection,nozzle.size,FACS.instument,Experiment ID ,Columns sorted,Double check,Plate,Location ,Comments,mouse.age,mouse.number,mouse.sex
A1-MAA100140-3_57_F-1-1,428699,502312,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A10-MAA100140-3_57_F-1-1,324428,360285,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A11-MAA100140-3_57_F-1-1,381310,431800,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A12-MAA100140-3_57_F-1-1,393498,446705,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A2-MAA100140-3_57_F-1-1,717,918,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F

counts.iloc[:5, :20].to_csv()

cell,0610005C13Rik,0610007C21Rik,0610007L01Rik,0610007N19Rik,0610007P08Rik,0610007P14Rik,0610007P22Rik,0610008F07Rik,0610009B14Rik,0610009B22Rik,0610009D07Rik,0610009L18Rik,0610009O20Rik,0610010B08Rik,0610010F05Rik,0610010K14Rik,0610010O12Rik,0610011F06Rik,0610011L14Rik,0610012G03Rik
A1-MAA100140-3_57_F-1-1,308,289,81,0,4,88,52,0,0,104,65,0,1,0,9,8,12,283,12,37
A10-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A11-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A12-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A2-MAA100140-3_57_F-1-1,375,325,70,0,2,72,36,13,0,60,105,0,13,0,0,29,15,264,0,65

回复:pandas.DataFrame.to_xarray()- 这非常慢,对我来说将这么多数字和分类数据编码为 100 级 MultiIndex 似乎很奇怪。那,每次我尝试使用MultiIndex它时,我总是会说“哦,这就是我不使用 MultiIndex 的原因”并恢复到拥有单独的元数据和计数数据帧。

4

1 回答 1

2

Xarray 使用 pandas 索引/列标签作为默认元数据。当所有变量共享相同的维度时,您可以在单个函数调用中进行转换,但如果不同的变量具有不同的维度,则需要分别从 pandas 转换它们,然后将它们放在 xarray 端。例如:

import pandas as pd
import io
import xarray

# read your data
cell_metadata = pd.read_csv(io.StringIO(u"""\
cell,Uniquely mapped reads number,Number of input reads,EXP_ID,TAXON,WELL_MAPPING,Lysis Plate Batch,dNTP.batch,oligodT.order.no,plate.type,preparation.site,date.prepared,date.sorted,tissue,subtissue,mouse.id,FACS.selection,nozzle.size,FACS.instument,Experiment ID ,Columns sorted,Double check,Plate,Location ,Comments,mouse.age,mouse.number,mouse.sex
A1-MAA100140-3_57_F-1-1,428699,502312,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A10-MAA100140-3_57_F-1-1,324428,360285,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A11-MAA100140-3_57_F-1-1,381310,431800,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A12-MAA100140-3_57_F-1-1,393498,446705,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F
A2-MAA100140-3_57_F-1-1,717,918,170928_A00111_0068_AH3YKKDMXX,mus,MAA100140,,,,Biorad 96well,Stanford,,170720,Liver,Hepatocytes,3_57_F,,,,,,,,,,3,57,F"""))
counts = pd.read_csv(io.StringIO(u"""\
cell,0610005C13Rik,0610007C21Rik,0610007L01Rik,0610007N19Rik,0610007P08Rik,0610007P14Rik,0610007P22Rik,0610008F07Rik,0610009B14Rik,0610009B22Rik,0610009D07Rik,0610009L18Rik,0610009O20Rik,0610010B08Rik,0610010F05Rik,0610010K14Rik,0610010O12Rik,0610011F06Rik,0610011L14Rik,0610012G03Rik
A1-MAA100140-3_57_F-1-1,308,289,81,0,4,88,52,0,0,104,65,0,1,0,9,8,12,283,12,37
A10-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A11-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A12-MAA100140-3_57_F-1-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
A2-MAA100140-3_57_F-1-1,375,325,70,0,2,72,36,13,0,60,105,0,13,0,0,29,15,264,0,65"""))

# build the output
xarray_counts = xarray.DataArray(counts.set_index('cell'), dims=['cell', 'gene'])
xarray_counts.coords.update(cell_metadata.set_index('cell').to_xarray())
print(xarray_counts)

这会产生一个漂亮、整洁xarray.DataArray的计数:

<xarray.DataArray (cell: 5, gene: 20)>
array([[308, 289,  81,   0,   4,  88,  52,   0,   0, 104,  65,   0,   1,   0,
          9,   8,  12, 283,  12,  37],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
          0,   0,   0,   0,   0,   0],
       [375, 325,  70,   0,   2,  72,  36,  13,   0,  60, 105,   0,  13,   0,
          0,  29,  15, 264,   0,  65]])
Coordinates:
  * cell                          (cell) object 'A1-MAA100140-3_57_F-1-1' ...
  * gene                          (gene) object '0610005C13Rik' ...
    Uniquely mapped reads number  (cell) int64 428699 324428 381310 393498 717
    Number of input reads         (cell) int64 502312 360285 431800 446705 918
    EXP_ID                        (cell) object '170928_A00111_0068_AH3YKKDMXX' ...
    TAXON                         (cell) object 'mus' 'mus' 'mus' 'mus' 'mus'
    WELL_MAPPING                  (cell) object 'MAA100140' 'MAA100140' ...
    Lysis Plate Batch             (cell) float64 nan nan nan nan nan
    dNTP.batch                    (cell) float64 nan nan nan nan nan
    oligodT.order.no              (cell) float64 nan nan nan nan nan
    plate.type                    (cell) object 'Biorad 96well' ...
    preparation.site              (cell) object 'Stanford' 'Stanford' ...
    date.prepared                 (cell) float64 nan nan nan nan nan
    date.sorted                   (cell) int64 170720 170720 170720 170720 ...
    tissue                        (cell) object 'Liver' 'Liver' 'Liver' ...
    subtissue                     (cell) object 'Hepatocytes' 'Hepatocytes' ...
    mouse.id                      (cell) object '3_57_F' '3_57_F' '3_57_F' ...
    FACS.selection                (cell) float64 nan nan nan nan nan
    nozzle.size                   (cell) float64 nan nan nan nan nan
    FACS.instument                (cell) float64 nan nan nan nan nan
    Experiment ID                 (cell) float64 nan nan nan nan nan
    Columns sorted                (cell) float64 nan nan nan nan nan
    Double check                  (cell) float64 nan nan nan nan nan
    Plate                         (cell) float64 nan nan nan nan nan
    Location                      (cell) float64 nan nan nan nan nan
    Comments                      (cell) float64 nan nan nan nan nan
    mouse.age                     (cell) int64 3 3 3 3 3
    mouse.number                  (cell) int64 57 57 57 57 57
    mouse.sex                     (cell) object 'F' 'F' 'F' 'F' 'F'

如果您想要一个 Dataset,请将 DataArray 对象放入 Dataset 构造函数中,例如,

# shouldn't really need to use .data_vars here, that might be an xarray bug
>>> xarray.Dataset({'counts': xarray.DataArray(counts.set_index('cell'),
...                                            dims=['cell', 'gene'])},
...                coords=cell_metadata.set_index('cell').to_xarray().data_vars)    <xarray.Dataset>

Dimensions:                       (cell: 5, gene: 20)
Coordinates:
  * cell                          (cell) object 'A1-MAA100140-3_57_F-1-1' ...
  * gene                          (gene) object '0610005C13Rik' ...
    Uniquely mapped reads number  (cell) int64 428699 324428 381310 393498 717
    Number of input reads         (cell) int64 502312 360285 431800 446705 918
    EXP_ID                        (cell) object '170928_A00111_0068_AH3YKKDMXX' ...
    TAXON                         (cell) object 'mus' 'mus' 'mus' 'mus' 'mus'
    WELL_MAPPING                  (cell) object 'MAA100140' 'MAA100140' ...
    Lysis Plate Batch             (cell) float64 nan nan nan nan nan
    dNTP.batch                    (cell) float64 nan nan nan nan nan
    oligodT.order.no              (cell) float64 nan nan nan nan nan
    plate.type                    (cell) object 'Biorad 96well' ...
    preparation.site              (cell) object 'Stanford' 'Stanford' ...
    date.prepared                 (cell) float64 nan nan nan nan nan
    date.sorted                   (cell) int64 170720 170720 170720 170720 ...
    tissue                        (cell) object 'Liver' 'Liver' 'Liver' ...
    subtissue                     (cell) object 'Hepatocytes' 'Hepatocytes' ...
    mouse.id                      (cell) object '3_57_F' '3_57_F' '3_57_F' ...
    FACS.selection                (cell) float64 nan nan nan nan nan
    nozzle.size                   (cell) float64 nan nan nan nan nan
    FACS.instument                (cell) float64 nan nan nan nan nan
    Experiment ID                 (cell) float64 nan nan nan nan nan
    Columns sorted                (cell) float64 nan nan nan nan nan
    Double check                  (cell) float64 nan nan nan nan nan
    Plate                         (cell) float64 nan nan nan nan nan
    Location                      (cell) float64 nan nan nan nan nan
    Comments                      (cell) float64 nan nan nan nan nan
    mouse.age                     (cell) int64 3 3 3 3 3
    mouse.number                  (cell) int64 57 57 57 57 57
    mouse.sex                     (cell) object 'F' 'F' 'F' 'F' 'F'
Data variables:
    counts                        (cell, gene) int64 308 289 81 0 4 88 52 0 ...
于 2017-10-18T01:15:17.393 回答