在过去的几天里,我一直在调试我的神经网络,但我找不到问题。
我创建了用于识别 MNIST 数据集图像的多层感知器的完整原始实现。
网络似乎在学习,因为经过训练周期测试数据的准确率超过 94%。我的损失函数有问题 - 它会在一段时间后开始增加,当测试/验证准确度达到 ~76% 时。
有人可以检查我的前向/反向传播数学并告诉我我的损失函数是否正确实现,或者建议可能有什么问题?
神经网络结构:
- 输入层:758 个节点,(每个像素 1 个节点)
- 隐藏层 1:300 个节点
- 隐藏层 2:75 个节点
- 输出层:10个节点
NN激活函数:
- 输入层 -> 隐藏层 1:ReLU
- 隐藏层 1 -> 隐藏层 2:ReLU
- 隐藏层 2 -> 输出层 3:Softmax
NN损失函数:
- 分类交叉熵
完整的 CLEAN 代码可在此处作为 Jupyter Notebook 获得。
神经网络前向/后向传播:
def train(self, features, targets):
n_records = features.shape[0]
# placeholders for weights and biases change values
delta_weights_i_h1 = np.zeros(self.weights_i_to_h1.shape)
delta_weights_h1_h2 = np.zeros(self.weights_h1_to_h2.shape)
delta_weights_h2_o = np.zeros(self.weights_h2_to_o.shape)
delta_bias_i_h1 = np.zeros(self.bias_i_to_h1.shape)
delta_bias_h1_h2 = np.zeros(self.bias_h1_to_h2.shape)
delta_bias_h2_o = np.zeros(self.bias_h2_to_o.shape)
for X, y in zip(features, targets):
### forward pass
# input to hidden 1
inputs_to_h1_layer = np.dot(X, self.weights_i_to_h1) + self.bias_i_to_h1
inputs_to_h1_layer_activated = self.activation_ReLU(inputs_to_h1_layer)
# hidden 1 to hidden 2
h1_to_h2_layer = np.dot(inputs_to_h1_layer_activated, self.weights_h1_to_h2) + self.bias_h1_to_h2
h1_to_h2_layer_activated = self.activation_ReLU(h1_to_h2_layer)
# hidden 2 to output
h2_to_output_layer = np.dot(h1_to_h2_layer_activated, self.weights_h2_to_o) + self.bias_h2_to_o
h2_to_output_layer_activated = self.softmax(h2_to_output_layer)
# output
final_outputs = h2_to_output_layer_activated
### backpropagation
# output to hidden2
error = y - final_outputs
output_error_term = error.dot(self.dsoftmax(h2_to_output_layer_activated))
h2_error = np.dot(output_error_term, self.weights_h2_to_o.T)
h2_error_term = h2_error * self.activation_dReLU(h1_to_h2_layer_activated)
# hidden2 to hidden1
h1_error = np.dot(h2_error_term, self.weights_h1_to_h2.T)
h1_error_term = h1_error * self.activation_dReLU(inputs_to_h1_layer_activated)
# weight & bias step (input to hidden)
delta_weights_i_h1 += h1_error_term * X[:, None]
delta_bias_i_h1 = np.sum(h1_error_term, axis=0)
# weight & bias step (hidden1 to hidden2)
delta_weights_h1_h2 += h2_error_term * inputs_to_h1_layer_activated[:, None]
delta_bias_h1_h2 = np.sum(h2_error_term, axis=0)
# weight & bias step (hidden2 to output)
delta_weights_h2_o += output_error_term * h1_to_h2_layer_activated[:, None]
delta_bias_h2_o = np.sum(output_error_term, axis=0)
# update the weights and biases
self.weights_i_to_h1 += self.lr * delta_weights_i_h1 / n_records
self.weights_h1_to_h2 += self.lr * delta_weights_h1_h2 / n_records
self.weights_h2_to_o += self.lr * delta_weights_h2_o / n_records
self.bias_i_to_h1 += self.lr * delta_bias_i_h1 / n_records
self.bias_h1_to_h2 += self.lr * delta_bias_h1_h2 / n_records
self.bias_h2_to_o += self.lr * delta_bias_h2_o / n_records
激活函数实现:
def activation_ReLU(self, x):
return x * (x > 0)
def activation_dReLU(self, x):
return 1. * (x > 0)
def softmax(self, x):
z = x - np.max(x)
return np.exp(z) / np.sum(np.exp(z))
def dsoftmax(self, x):
# TODO: vectorise math
vec_len = len(x)
J = np.zeros((vec_len, vec_len))
for i in range(vec_len):
for j in range(vec_len):
if i == j:
J[i][j] = x[i] * (1 - x[j])
else:
J[i][j] = -x[i] * x[j]
return J
损失函数实现:
def categorical_cross_entropy(pred, target):
return (1/len(pred)) * -np.sum(target * np.log(pred))