1

我必须在没有 vpython 的情况下计算 2 个重力系统(地球和月球)。

这段代码的目的是练习数值计算,还有我的代码。

import numpy as np
from math import *

from astropy.constants import *

import matplotlib.pyplot as plt

import time

start_time = time.time()

"""
G = Gravitational constant
g0 = Standard acceleration of gravity ( 9.8 m/s2)
M_sun = Solar mass
M_earth = Earth mass
R_sun = Solar darius
R_earth = Earth equatorial radius
au = Astronomical unit


"""

M_moon = 7.342E22
R_moon = 1.737E6
# Mean radius of moon.


M_earth = M_earth.value
R_earth = R_earth.value
G = G.value

perigee, apogee = 3.626E8, 4.054E8

position_E = np.array([0,0])
position_M = np.array([(perigee+apogee)/2.,0])
position_com = (M_earth*position_E+M_moon*position_M)/(M_earth+M_moon)

rel_pE = position_E - position_com
rel_pM = position_M - position_com


p_E = {"x":rel_pE[0], "y":rel_pE[1],"v_x":0, "v_y":10}
p_M = {"x":rel_pM[0], "y":rel_pM[1],"v_x":0, "v_y":-100}

t = range(0,365)

data_E , data_M = [0]*len(t), [0]*len(t)

def s(initial_velocity, acceleration, time):
    result = initial_velocity*time + 0.5*acceleration*time**2
    return result

def v(initial_velocity, acceleration, time):
    result = initial_velocity + acceleration*time
    return result

dist = float(sqrt((p_E["x"]-p_M['x'])**2 + (p_E["y"]-p_M["y"])**2))

# position data of Earth and Moon. make new list to make easy to draw plot

xE=[]
yE=[]
xM=[]
yM=[]

for i in t:
    dist = float(sqrt((p_E["x"]-p_M["x"])**2 + (p_E["y"]-p_M["y"])**2))


    a_Ex = -G*M_moon*p_E["x"]/(dist**2)
    a_Ey = -G*M_moon*p_E["y"]/(dist**2)

    data_E[i] = p_E

    p_E["x"] += s(p_E['v_x'], a_Ex, 24*3600)
    p_E["v_x"] += v(p_E['v_x'], a_Ex, 24*3600)
    p_E["y"] += s(p_E['v_y'], a_Ey, 24*3600)
    p_E["v_y"] += v(p_E['v_y'], a_Ey, 24*3600)

    xE += [p_E["x"]]
    yE += [p_E["y"]]

    a_Mx = -G*M_earth*p_M["x"]/(dist**2)
    a_My = -G*M_earth*p_M["y"]/(dist**2)

    data_M[i] = p_M

    p_M["x"] += s(p_M['v_x'], a_Mx, 24*3600)
    p_M["v_x"] += v(p_M['v_x'], a_Mx, 24*3600)
    p_M["y"] += s(p_M['v_y'], a_My, 24*3600)
    p_M["v_y"] += v(p_M['v_y'], a_My, 24*3600)

    xM += [p_M["x"]]
    yM += [p_M["y"]]

print("\n Run time \n --- %d seconds ---" %(time.time()-start_time))

但是这段代码使 x&y 都增加了。

它没有显示椭圆轨道。如何修复我的代码或编写一个新代码来描述关于地球和月球引力系统的完美椭圆轨道。

谢谢你的帮助!

4

0 回答 0