我正在使用分水岭算法来分割黑暗背景上的亮点。下面提供了代码,以及它生成的一些图像。
在第二张图片中,我用红叉标记了被分割为“细胞”的封闭背景区域(它们不是生物细胞,只是使用这个词) - 这是不正确的,它们是背景的一部分,只是被“细胞”包围。我看到这会产生错误的最小值,对如何防止这种情况有任何帮助吗?
% Improve contrast, binarize
RFP_adjust = imadjust(RFP_blur, stretchlim(RFP_blur, 0.001));
figure, imshow(RFP_adjust), title('Contrast adjust');
RFP_binarized = imbinarize(RFP_adjust);
RFP_perimeters = bwperim(RFP_binarized);
% figure, imshow(RFP_binarized), title('Otsu thresholding');
%2B - SEGMENTATION BY WATERSHED METHOD
% Discover putative cell centroids and process
RFP_maxs = imextendedmax(RFP_adjust, 3000);
RFP_maxs = imclose(RFP_maxs, strel('disk',5));
RFP_maxs = imfill(RFP_maxs, 'holes');
RFP_maxs = bwareaopen(RFP_maxs, 5);
RFP_max_overlay = imoverlay(RFP_adjust, RFP_perimeters | RFP_maxs, [1 .3 .3]);
figure, imshow(RFP_max_overlay), title('Maxima');
% Obtain complement - maxima become low-points (required for watershed)
RFP_comp = imcomplement(RFP_adjust);
RFP_imposemin = imimposemin(RFP_comp, ~RFP_binarized | RFP_maxs);
figure, imshow(RFP_imposemin), title('Inverted Maxima');
% Apply watershed
RFP_watershed = watershed(RFP_imposemin);
mask = im2bw(RFP_watershed, 1);
overlay3 = imoverlay(RFP_adjust, mask, [1 .3 .3]);
figure, imshow(overlay3), title('Segmented cells');
% Segment
RFP_cc = bwconncomp(RFP_watershed);
RFP_label_matrix = labelmatrix(RFP_cc);
whos labeled;
RFP_label = label2rgb(RFP_label_matrix, @spring, 'c', 'shuffle');
figure, imshow(RFP_label), title('Cells segmented');