0

鉴于有一条从两个常见同义词集到获得最低共同上位词的路径,似乎应该有某种方式回溯并找到导致该上位词的下位词

from nltk.corpus import wordnet as wn
alaska = wn.synset('Alaska.n.1')
california = wn.synset('California.n.1')
common_hypernym = alaska.lowest_common_hypernyms(california)[0]

common_hypernym
Synset('american_state.n.01')

common_hypernym.do_something_awesome()
['Alabama.n.1', 'Alaska.n.1', ...] #all 50 american states
4

2 回答 2

2

用于Synset1._shortest_path_distance(Synset2)查找上位词及其距离:

>>> from nltk.corpus import wordnet as wn
>>> alaska = wn.synset('Alaska.n.1')
>>> california = wn.synset('California.n.1')

>>> alaska._shortest_hypernym_paths(california)
{Synset('district.n.01'): 4, Synset('location.n.01'): 6, Synset('region.n.03'): 5, Synset('physical_entity.n.01'): 8, Synset('entity.n.01'): 9, Synset('state.n.01'): 2, Synset('administrative_district.n.01'): 3, Synset('object.n.01'): 7, Synset('alaska.n.01'): 0, Synset('*ROOT*'): 10, Synset('american_state.n.01'): 1}

现在找到最小路径:

>>> paths = alaska._shortest_hypernym_paths(california)
>>> min(paths, key=paths.get)
Synset('alaska.n.01')

现在,这很无聊,因为californiaalaska是 WordNet 层次结构上的姐妹节点。让我们过滤掉所有姐妹节点:

>>> paths = {k:v for k,v in paths.items() if v > 0}
>>> min(paths, key=paths.get)
Synset('american_state.n.01')

要获得的子节点american_state(我想这是你需要的“很棒的东西”......):

>>> min(paths, key=paths.get).hyponyms()
[Synset('free_state.n.02'), Synset('slave_state.n.01')]
>>> list(min(paths, key=paths.get).closure(lambda s:s.hyponyms()))
[Synset('free_state.n.02'), Synset('slave_state.n.01')]

这可能看起来令人震惊,但实际上,没有表示alaskaor的上位词california

>>> alaska.hypernyms()
[]
>>> california.hypernyms()
[]

并且使用 d 建立的连接_shortest_hypernym_paths是通过虚拟根进行的,看看Wordnet 路径相似性可交换吗?

于 2017-05-09T15:45:52.947 回答
1

较新的解决方案是:

alaska = wordnet.synset('Alaska.n.1')
california = wordnet.synset('California.n.1')
alaska.lowest_common_hypernyms(california)

[同义词集('american_state.n.01')]

这个旧功能是私有的,不能以这种方式工作,也许是其他的,但无论如何,您也可以选择x.common.hypernyms(y)查找所有常见项目。

于 2019-02-12T13:27:02.550 回答