我在下面有这个数据框的例子:
key_date Particles PM timestamp date airport ws wd tempi humidity
1 2017-04-25 0.0000000 0.000000 1.493132e+12 2017-04-25 15:45:53 <NA> NA NA NA NA
2 2017-04-25 0.0000000 0.000000 1.493132e+12 2017-04-25 15:46:23 <NA> NA NA NA NA
3 2017-04-25 0.0000000 0.000000 1.493132e+12 2017-04-25 15:46:53 <NA> NA NA NA NA
4 2017-04-25 1.5333300 91.269643 1.493132e+12 2017-04-25 15:47:23 <NA> NA NA NA NA
5 2017-04-25 1.7733300 105.555357 1.493132e+12 2017-04-25 15:47:53 <NA> NA NA NA NA
6 2017-04-25 0.0000000 0.000000 1.493132e+12 2017-04-25 15:48:23 <NA> NA NA NA NA
7 2017-04-25 0.4100000 24.404762 1.493132e+12 2017-04-25 15:48:53 <NA> NA NA NA NA
8 2017-04-25 0.0933333 5.555554 1.493132e+12 2017-04-25 15:49:23 <NA> NA NA NA NA
9 2017-04-25 0.2166670 12.896845 1.493132e+12 2017-04-25 15:49:53 <NA> NA NA NA NA
10 2017-04-25 0.0000000 0.000000 1.493132e+12 2017-04-25 15:50:23 <NA> NA NA NA NA
通常我mean
通过 申请我的情节openair
,例如:
timePlot(mergedDf, pollutant = c("Particles"), group = TRUE, avg.time = "1 min")
但是我怎样才能应用mean
到我的mergedDf
水平,而不是使用openair
?
我试过了:
mergedDf <- mergedDf[,list(avg=mean(Particles)),by='1 min']
我收到此错误:
( mergedDf
[.data.frame
, , list(avg = mean(Particles)), by = "1 min") 中的错误:未使用的参数 (by = "1 min")
任何想法我应该如何正确地做到这一点?
编辑:
样本数据:
> dput(mergedDf[1:20, ])
structure(list(key_date = c("2017-04-25", "2017-04-25", "2017-04-25",
"2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25",
"2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25",
"2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25", "2017-04-25",
"2017-04-25", "2017-04-25"), Particles = c(0, 0, 0, 1.53333,
1.77333, 0, 0.41, 0.0933333, 0.216667, 0, 0, 0, 0.126667, 0.226667,
0.103333, 0.26, 0.206667, 0.473333, 0, 0), PM = c(0, 0, 0, 91.2696428571429,
105.555357142857, 0, 24.4047619047619, 5.55555357142857, 12.8968452380952,
0, 0, 0, 7.53970238095238, 13.4920833333333, 6.15077380952381,
15.4761904761905, 12.3016071428571, 28.1745833333333, 0, 0),
timestamp = c(1493131553332, 1493131583376, 1493131613410,
1493131643467, 1493131673527, 1493131703573, 1493131733617,
1493131763676, 1493131793730, 1493131823777, 1493131853791,
1493131883866, 1493131913922, 1493131943948, 1493131973986,
1493132004055, 1493132034084, 1493132064145, 1493132094211,
1493132124236), date = structure(c(1493131553.332, 1493131583.376,
1493131613.41, 1493131643.467, 1493131673.527, 1493131703.573,
1493131733.617, 1493131763.676, 1493131793.73, 1493131823.777,
1493131853.791, 1493131883.866, 1493131913.922, 1493131943.948,
1493131973.986, 1493132004.055, 1493132034.084, 1493132064.145,
1493132094.211, 1493132124.236), class = c("POSIXct", "POSIXt"
), tzone = "UTC-1"), airport = c(NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_, NA_character_, NA_character_, NA_character_,
NA_character_, NA_character_), ws = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), wd = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_), tempi = c(NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_
), humidity = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,
NA_real_, NA_real_, NA_real_)), .Names = c("key_date", "Particles",
"PM", "timestamp", "date", "airport", "ws", "wd", "tempi", "humidity"
), row.names = c(NA, 20L), class = "data.frame")