我有一个列随机矩阵 A 并想在 C++ 中求解以下方程:Ax=x
我假设我需要找出特征值设置为 1 的特征向量 x(对吗?),但我无法在 C++ 中弄清楚。到目前为止,我已经检查了一些数学库,例如 Seldon、CPPScaLapack、Eigen ......其中,Eigen 似乎是一个不错的选择,但我不明白如何利用它们中的任何一个来解决上面的方程。
你能给我一些建议/代码片段或想法来解决这个等式吗?非常感谢任何帮助。
谢谢。
编辑:A 是 n×n 实数非负矩阵。
我有一个列随机矩阵 A 并想在 C++ 中求解以下方程:Ax=x
我假设我需要找出特征值设置为 1 的特征向量 x(对吗?),但我无法在 C++ 中弄清楚。到目前为止,我已经检查了一些数学库,例如 Seldon、CPPScaLapack、Eigen ......其中,Eigen 似乎是一个不错的选择,但我不明白如何利用它们中的任何一个来解决上面的方程。
你能给我一些建议/代码片段或想法来解决这个等式吗?非常感谢任何帮助。
谢谢。
编辑:A 是 n×n 实数非负矩阵。
请记住,我没有使用 Eigen,但它EigenSolver
看起来SelfAdjointEigenSolver
能够解决这个问题。这些被列为“实验性”,因此可能存在错误并且 API 将来可能会更改。
// simple, not very efficient
template <typename _M>
bool isSelfAdjoint(const _M& a) {
return a == a.adjoint();
}
template <typename _M>
std::pair<Eigen::EigenSolver<_M>::EigenvalueType Eigen::EigenSolver<_M>::EigenvectorType>
eigenvectors(const _M& a) {
if (isSelfAdjoint(a)) {
Eigen::EigenSolver<M> saes(a);
return pair(saes.eigenvalues(), saes.eigenvectors());
} else {
Eigen::EigenSolver<M> es(a);
return pair(es.eigenvalues, es.eigenvectors());
}
}
这两个求解器类对于特征值和特征向量集合具有不同的类型,但是由于它们都基于类 Matrix 并且 Matrices 是可转换的,因此上面应该可以工作。
或者,您可以将问题作为齐次线性方程(AI n ) x = 0来解决,这可以通过将 AI n转换为上三角矩阵来解决。高斯消除将做到这一点(尽管您需要跳过确保前导系数为 1 的每一行的归一化步骤,因为整数不是一个字段)。快速浏览上述项目并没有发现对行梯队转换的支持,这可能意味着我错过了它。无论如何,使用一些辅助类(RowMajor
, RowMajor::iterator
,RowWithPivot
在下面的)。我什至还没有测试这是否会编译,所以把它作为算法的说明,而不是一个完整的、直接的解决方案。尽管示例使用了函数,但使用类(à la EigenSolver)可能更有意义。
/* Finds a row with the lowest pivot index in a range of matrix rows.
* Arguments:
* - start: the first row to check
* - end: row that ends search range (not included in search)
* - pivot_i (optional): if a row with pivot index == pivot_i is found, search
* no more. Can speed things up if the pivot index of all rows in the range
* have a known lower bound.
*
* Returns an iterator p where p->pivot_i = min([start .. end-1]->pivot_i)
*
*/
template <typename _M>
RowMajor<_M>::iterator
find_lead_pivot (RowMajor<_M>::iterator start,
const RowMajor<_M>::iterator& end,
int pivot_i=0)
{
RowMajor<_M>::iterator lead=start;
for (; start != end; ++start) {
if (start->pivot() <= pivot_i) {
return start;
}
if (start->pivot() < lead->pivot()) {
lead = start;
}
}
return end;
}
/* Returns a matrix that's the row echelon form of the passed in matrix.
*/
template <typename _M>
_M form_of_echelon(const _M& a) {
_M a_1 = a-_M::Identity();
RowMajor<_M> rma_1 = RowMajor<_M>(a_1);
typedef RowMajor<_M>::iterator RMIter;
RMIter lead;
int i=0;
/*
Loop invariant: row(i).pivot_i <= row(j).pivot_i, for j st. j>i
*/
for (RMIter row_i = rma_1.begin();
row_i != rma_1.end() && row_i->pivot() != 0;
++row_i, ++i)
{
lead = find_lead_pivot(row_i, rma_1.end(), i);
// ensure row(i) has minimal pivot index
swap(*lead, *row_i);
// ensure row(j).pivot_i > row(i).pivot_i
for (RMIter row_j = row_i+1;
row_j != rma_1.end();
++row_j)
{
*row_j = *row_j * row_i->pivot() - *row_i * row_j->pivot();
}
/* the best we can do towards true row echelon form is reduce
* the leading coefficient by the row's GCD
*/
// *row_i /= gcd(*row_i);
}
return static_cast<_M>(rma_1);
}
/* Converts a matrix to echelon form in-place
*/
template <typename _M>
_M& form_of_echelon(_M& a) {
a -= _M::Identity();
RowMajor<_M> rma_1 = RowMajor<_M>(a);
typedef RowMajor<_M>::iterator RMIter;
RMIter lead;
int i=0;
/*
Loop invariant: row(i).pivot_i <= row(j).pivot_i, for j st. j>i
*/
for (RMIter row_i = rma_1.begin();
row_i != rma_1.end() && row_i->pivot() != 0;
++row_i, ++i)
{
lead = find_lead_pivot(row_i, rma_1.end(), i);
// ensure row(i) has minimal pivot index
swap(*lead, *row_i);
for (RMIter row_j = row_i+1;
row_j != rma_1.end();
++row_j)
{
*row_j = *row_j * row_i->pivot() - *row_i * row_j->pivot();
}
/* the best we can do towards true row echelon form is reduce
* the leading coefficient by the row's GCD
*/
// *row_i /= gcd(*row_i);
}
return a;
}
帮助类的接口,这些接口没有经过 const 正确性和其他使 C++ 工作的必要细节的审查。
template <typename _M>
class RowWithPivot {
public:
typedef _M::RowXpr Wrapped;
typedef _M::Scalar Scalar;
RowWithPivot(_M& matrix, size_t row);
Wrapped base();
operator Wrapped();
void swap(RowWithPivot& other);
int cmp(RowWithPivot& other) const;
bool operator <(RowWithPivot& other) const;
// returns the index of the first non-zero scalar
// (best to cache this)
int pivot_index() const;
// returns first non-zero scalar, or 0 if none
Scalar pivot() const;
};
template <typename _M, typename _R = RowWithPivot<_M> >
class RowMajor {
public:
typedef _R value_type;
RowMajor(_M& matrix);
operator _M&();
_M& base();
value_type operator[](size_t i);
class iterator {
public:
// standard random access iterator
...
};
iterator begin();
iterator end();
};