如何使用小波变换融合 2 张图像。有几种方法可用,例如主成分分析,高通滤波,IHS等。我想知道如何使用小波变换进行融合。我知道背后的理论,并想知道如何在 Python 中实现它。
这是基于小波变换的图像融合的链接https://www.slideshare.net/paliwalumed/wavelet-based-image-fusion-33185100
如何使用小波变换融合 2 张图像。有几种方法可用,例如主成分分析,高通滤波,IHS等。我想知道如何使用小波变换进行融合。我知道背后的理论,并想知道如何在 Python 中实现它。
这是基于小波变换的图像融合的链接https://www.slideshare.net/paliwalumed/wavelet-based-image-fusion-33185100
首先你需要下载 PyWavelet https://pywavelets.readthedocs.io/en/latest/
其次在您的图像上运行以下代码:
import pywt
import cv2
import numpy as np
# This function does the coefficient fusing according to the fusion method
def fuseCoeff(cooef1, cooef2, method):
if (method == 'mean'):
cooef = (cooef1 + cooef2) / 2
elif (method == 'min'):
cooef = np.minimum(cooef1,cooef2)
elif (method == 'max'):
cooef = np.maximum(cooef1,cooef2)
else:
cooef = []
return cooef
# Params
FUSION_METHOD = 'mean' # Can be 'min' || 'max || anything you choose according theory
# Read the two image
I1 = cv2.imread('i1.bmp',0)
I2 = cv2.imread('i2.jpg',0)
# We need to have both images the same size
I2 = cv2.resize(I2,I1.shape) # I do this just because i used two random images
## Fusion algo
# First: Do wavelet transform on each image
wavelet = 'db1'
cooef1 = pywt.wavedec2(I1[:,:], wavelet)
cooef2 = pywt.wavedec2(I2[:,:], wavelet)
# Second: for each level in both image do the fusion according to the desire option
fusedCooef = []
for i in range(len(cooef1)-1):
# The first values in each decomposition is the apprximation values of the top level
if(i == 0):
fusedCooef.append(fuseCoeff(cooef1[0],cooef2[0],FUSION_METHOD))
else:
# For the rest of the levels we have tupels with 3 coeeficents
c1 = fuseCoeff(cooef1[i][0],cooef2[i][0],FUSION_METHOD)
c2 = fuseCoeff(cooef1[i][1], cooef2[i][1], FUSION_METHOD)
c3 = fuseCoeff(cooef1[i][2], cooef2[i][2], FUSION_METHOD)
fusedCooef.append((c1,c2,c3))
# Third: After we fused the cooefficent we nned to transfor back to get the image
fusedImage = pywt.waverec2(fusedCooef, wavelet)
# Forth: normmalize values to be in uint8
fusedImage = np.multiply(np.divide(fusedImage - np.min(fusedImage),(np.max(fusedImage) - np.min(fusedImage))),255)
fusedImage = fusedImage.astype(np.uint8)
# Fith: Show image
cv2.imshow("win",fusedImage)
fusedImage 是 I1 和 I2 的融合结果