我想创建一个升级版本,dplyr::bind_rows
以避免在Unequal factor levels: coercing to character
我们尝试组合的 dfs 中存在因子列时出现警告(可能也有非因子列)。这是一个例子:
df1 <- dplyr::data_frame(age = 1:3, gender = factor(c("male", "female", "female")), district = factor(c("north", "south", "west")))
df2 <- dplyr::data_frame(age = 4:6, gender = factor(c("male", "neutral", "neutral")), district = factor(c("central", "north", "east")))
然后bind_rows_with_factor_columns(df1, df2)
返回(没有警告):
dplyr::data_frame(
age = 1:6,
gender = factor(c("male", "female", "female", "male", "neutral", "neutral")),
district = factor(c("north", "south", "west", "central", "north", "east"))
)
这是我到目前为止所拥有的:
bind_rows_with_factor_columns <- function(...) {
factor_columns <- purrr::map(..., function(df) {
colnames(dplyr::select_if(df, is.factor))
})
if (length(unique(factor_columns)) > 1) {
stop("All factor columns in dfs must have the same column names")
}
df_list <- purrr::map(..., function (df) {
purrr::map_if(df, is.factor, as.character) %>% dplyr::as_data_frame()
})
dplyr::bind_rows(df_list) %>%
purrr::map_at(factor_columns[[1]], as.factor) %>%
dplyr::as_data_frame()
}
我想知道是否有人对如何合并该forcats
软件包有任何想法,以潜在地避免对角色强制因素,或者是否有人总体上有任何建议来提高其性能同时保持相同的功能(我想坚持tidyverse
语法)。谢谢!