2

[我是 R 新手...] 我有这个数据框

df1 <- data.frame(c(2,1,2), c(1,2,3,4,5,6), seq(141,170)) #create data.frame
names(df1) <- c('gender', 'age', 'height') #column names

我想要df1一个数据框对象中的摘要,如下所示:

         count     mean    std      min      25%      50%      75%      max
age    30.0000   3.5000 1.7370   1.0000   2.0000   3.5000   5.0000   6.0000
gender 30.0000   1.6667 0.4795   1.0000   1.0000   2.0000   2.0000   2.0000
height 30.0000 155.5000 8.8034 141.0000 148.2500 155.5000 162.7500 170.0000

我已经在 Python 中使用df1.describe().T. 我怎样才能在 R 中做到这一点?

如果我的摘要数据框将包含“dtype”、“null”(NULL值的数量)、(数量)“唯一”和“范围”值以及具有全面的摘要统计信息,那将是免费的:

         count     mean    std      min      25%      50%      75%      max  null  unique  range  dtype
age    30.0000   3.5000 1.7370   1.0000   2.0000   3.5000   5.0000   6.0000     0       6      5  int64
gender 30.0000   1.6667 0.4795   1.0000   1.0000   2.0000   2.0000   2.0000     0       2      1  int64
height 30.0000 155.5000 8.8034 141.0000 148.2500 155.5000 162.7500 170.0000     0      30     29  int64

上述结果的 Python 代码为:

df1.describe().T.join(pd.DataFrame(df1.isnull().sum(), columns=['null']))\
    .join(pd.DataFrame.from_dict({i:df1[i].nunique() for i in df1.columns}, orient='index')\
    .rename(columns={0:'unique'}))\
    .join(pd.DataFrame.from_dict({i:(df1[i].max() - df1[i].min()) for i in df1.columns}, orient='index')\
    .rename(columns={0:'range'}))\
    .join(pd.DataFrame(df1.dtypes, columns=['dtype']))

谢谢!

4

2 回答 2

3

您可以使用这些库轻松且易读地做到这一点 - tidyrdplyr

library("tidyr")
library("dplyr")


df1 <- data.frame(c(2,1,2), c(1,2,3,4,5,6), seq(141,170)) #create data.frame
names(df1) <- c('gender', 'age', 'height') #column names
df2<- gather(df1,"attributes","value")

df2 %>% group_by(attributes) %>% summarise(count = n(), mean = mean(value), med = median(value),sd = sd(value), min = min(value), max = max(value))

#  A tibble: 3 x 7
#   attributes count       mean   med        sd   min   max
#         <chr> <int>      <dbl> <dbl>     <dbl> <dbl> <dbl>
# 1        age    30   3.500000   3.5 1.7370208     1     6
# 2     gender    30   1.666667   2.0 0.4794633     1     2
# 3     height    30 155.500000 155.5 8.8034084   141   170
于 2016-08-11T11:50:21.613 回答
1

我通常使用一个小函数(改编自网上找到的脚本)来进行这种转换:

sumstats = function(x) { 
  null.k <- function(x) sum(is.na(x))
  unique.k <- function(x) {if (sum(is.na(x)) > 0) length(unique(x)) - 1
    else length(unique(x))}
  range.k <- function(x) max(x, na.rm=TRUE) - min(x, na.rm=TRUE)
  mean.k=function(x) {if (is.numeric(x)) round(mean(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  sd.k <- function(x) {if (is.numeric(x)) round(sd(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  min.k <- function(x) {if (is.numeric(x)) round(min(x, na.rm=TRUE), digits=2)
    else "N*N"} 
  q05 <- function(x) quantile(x, probs=.05, na.rm=TRUE)
  q10 <- function(x) quantile(x, probs=.1, na.rm=TRUE)
  q25 <- function(x) quantile(x, probs=.25, na.rm=TRUE)
  q50 <- function(x) quantile(x, probs=.5, na.rm=TRUE)
  q75 <- function(x) quantile(x, probs=.75, na.rm=TRUE)
  q90 <- function(x) quantile(x, probs=.9, na.rm=TRUE)
  q95 <- function(x) quantile(x, probs=.95, na.rm=TRUE)
  max.k <- function(x) {if (is.numeric(x)) round(max(x, na.rm=TRUE), digits=2)
    else "N*N"} 

  sumtable <- cbind(as.matrix(colSums(!is.na(x))), sapply(x, null.k), sapply(x, unique.k), sapply(x, range.k), sapply(x, mean.k), sapply(x, sd.k),
                    sapply(x, min.k), sapply(x, q05), sapply(x, q10), sapply(x, q25), sapply(x, q50),
                    sapply(x, q75), sapply(x, q90), sapply(x, q95), sapply(x, max.k)) 

  sumtable <- as.data.frame(sumtable); names(sumtable) <- c('count', 'null', 'unique',
                                                            'range', 'mean', 'std', 'min', '5%', '10%', '25%', '50%', '75%', '90%',
                                                            '95%', 'max') 
  return(sumtable)
} 
sumstats(df1)
        count   null    unique  range   mean    std     var     min     5%      10%     25%     50%     75%     90%     95%     max
gender  30.00   0.00    2.00    1.00    1.67    0.48    0.23    1.00    1.00    1.00    1.00    2.00    2.00    2.00    2.00    2.00
age     30.00   0.00    6.00    5.00    3.50    1.74    3.02    1.00    1.00    1.00    2.00    3.50    5.00    6.00    6.00    6.00
height  30.00   0.00    30.00   29.00   155.50  8.80    77.50   141.00  142.45  143.90  148.25  155.50  162.75  167.10  168.55  170.00

您可以轻松地调整它以添加更多描述性列,例如分位数、空值、范围等。它确实返回一个 data.frame。您可能还想在参数中预先指定带有 NA 的行为。

希望能帮助到你。

于 2016-08-11T09:48:48.433 回答