我有一个数据集,我在其中存储不同类/子类型的副本(不知道该怎么称呼它),然后是每个类/子类型的属性。本质上,有 5 个子类型/类,每个子类型/类有 4 个重复,以及 100 个被测量的属性。
是否有类似np.ravel
或np.flatten
可以使用合并二维的方法Xarray
?
在此,我想合并暗淡subtype
,replicates
所以我有一个 2D 数组(或pd.DataFrame
带有attributes vs. subtype/replicates
.
它不需要具有“coord_1 | coord_2”或任何格式。如果它保留原始坐标名称将很有用。也许有类似的东西groupby
可以做到这一点?Groupby
总是让我感到困惑,所以如果它是原生的东西xarray
,那就太棒了。
import xarray as xr
import numpy as np
# Set up xr.DataArray
dims = (5,4,100)
DA_data = xr.DataArray(np.random.random(dims), dims=["subtype","replicates","attributes"])
DA_data.coords["subtype"] = ["subtype_%d"%_ for _ in range(dims[0])]
DA_data.coords["replicates"] = ["rep_%d"%_ for _ in range(dims[1])]
DA_data.coords["attributes"] = ["attr_%d"%_ for _ in range(dims[2])]
# DA_data.coords
# Coordinates:
# * subtype (subtype) <U9 'subtype_0' 'subtype_1' 'subtype_2' ...
# * replicates (replicates) <U5 'rep_0' 'rep_1' 'rep_2' 'rep_3'
# * attributes (attributes) <U7 'attr_0' 'attr_1' 'attr_2' 'attr_3' ...
# DA_data.dims
# ('subtype', 'replicates', 'attributes')
# Naive way to collapse the replicate dimension into the subtype dimension
desired_columns = list()
for subtype in DA_data.coords["subtype"]:
for replicate in DA_data.coords["replicates"]:
desired_columns.append(str(subtype.values) + "|" + str(replicate.values))
desired_columns
# ['subtype_0|rep_0',
# 'subtype_0|rep_1',
# 'subtype_0|rep_2',
# 'subtype_0|rep_3',
# 'subtype_1|rep_0',
# 'subtype_1|rep_1',
# 'subtype_1|rep_2',
# 'subtype_1|rep_3',
# 'subtype_2|rep_0',
# 'subtype_2|rep_1',
# 'subtype_2|rep_2',
# 'subtype_2|rep_3',
# 'subtype_3|rep_0',
# 'subtype_3|rep_1',
# 'subtype_3|rep_2',
# 'subtype_3|rep_3',
# 'subtype_4|rep_0',
# 'subtype_4|rep_1',
# 'subtype_4|rep_2',
# 'subtype_4|rep_3']