我有一个关于使用 Matlab 计算随机微分方程解的问题。方程是本文(PDF)中第 3 页的 2.2a,b 。
我的教授建议使用ode45
小时间步长,但结果与文章中的不符。特别是时间序列和pdf。我对函数中白噪声的定义也有疑问。
这里是集成函数的代码:
function dVdt = R_Lang( t,V )
global sigma lambda alpha
W1=sigma*randn(1,1);
W2=sigma*randn(1,1);
dVdt=[alpha*V(1)+lambda*V(1)^3+1/V(1)*0.5*sigma^2+W1;
sigma/V(1)*W2];
end
主脚本:
clear variables
close all
global sigma lambda alpha
sigma=sqrt(2*0.0028);
alpha=3.81;
lambda=-5604;
tspan=[0,10];
options = odeset('RelTol',1E-6,'AbsTol',1E-6,'MaxStep',0.05);
A0=random('norm',0,0.5,[2,1]);
[t,L]=ode45(@(t,L) R_Lang(t,L),tspan,A0,options);
如果您有任何建议,我将不胜感激。
这里是面对我的 EM 方法和“sde_euler”的新代码。
lambda = -5604;
sigma=sqrt(2*0.0028) ;
Rzero = 0.03; % problem parameters
phizero=-1;
dt=1e-5;
T = 0:dt:10;
N=length(T);
Xi1 = sigma*randn(1,N); % Gaussian Noise with variance=sigma^2
Xi2 = sigma*randn(1,N);
alpha=3.81;
Rem = zeros(1,N); % preallocate for efficiency
Rtemp = Rzero;
phiem = zeros(1,N); % preallocate for efficiency
phitemp = phizero;
for j = 1:N
Rtemp = Rtemp + dt*(alpha*Rtemp+lambda*Rtemp^3+sigma^2/(2*Rtemp)) + sigma*Xi1(j);
phitemp=phitemp+sigma/Rtemp*Xi2(j);
phiem(j)=phitemp;
Rem(j) = Rtemp;
end
f = @(t,V)[alpha*V(1)+lambda*V(1)^3+0.5*sigma^2/V(1)/2;
0]; % Drift function
g = @(t,V)[sigma;
sigma/V(1)]; % Diffusion function
A0 = [0.03;0]; % 2-by-1 initial condition
opts = sdeset('RandSeed',1,'SDEType','Ito'); % Set random seed, use Ito formulation
L = sde_euler(f,g,T,A0,opts);
plot(T,Rem,'r')
hold on
plot(T,L(:,1),'b')
再次感谢您的帮助 !