我正在尝试使用 fdm_2nd 和高斯屠夫系数实现 RK 隐式 2 阶对流扩散方程 (1D): 'u_t = -uu_x + nu .u_xx' 。
我的目标是比较显式与隐式方案。显式 rk 在少量粘度下效果很好。显式方案的曲线向我们展示了一个非常好的冲击波。
我需要您的帮助来正确实现 k(i) 系数的求解器。我看不到如何为所有 k(i) 实现牛顿法。我是否需要为所有时空步骤实施它?还是及时?雅可比可能是错的,但我不知道在哪里。或者,也许我在错误的方向使用雅可比......
实际上,我的代码有效,但我认为它在某个地方是错误的......而且隐式曲线也不会从初始值移动。
这是我的功能:
function [t,u] = burgers(t0,U,N,dx)
nu=0.01; %coefficient de viscosité
A=(diag(zeros(1,N))-diag(ones(1,N-1),1)+diag(ones(1,N-1),-1)) / (2*dx);
B=(-2*diag(ones(1,N))+diag(ones(1,N-1),1)+diag(ones(1,N-1),-1)) / (dx).^2;
t=t0;
u = - A * U.^2 + nu .* B * U;
雅可比人:
function Jb = burJK(U,dx,i)
%Opérateurs
a(1,1) = 1/4;
a(1,2) = 1/4 - (3).^(1/2) / 6;
a(2,1) = 1/4 + (3).^(1/2) / 6;
a(2,2) = 1/4;
Jb(1,1) = a(1,1) .* (U(i+1,1) - U(i-1,1))/ (2*dx) - 1;
Jb(1,2) = a(1,2) .* (U(i+1,1) - U(i-1,1))/ (2*dx);
Jb(2,1) = a(2,1) .* (U(i+1,2) - U(i-1,2))/ (2*dx);
Jb(2,2) = a(2,2) .* (U(i+1,2) - U(i-1,2))/ (2*dx) - 1;
这是我的牛顿代码:
iter = 1;
iter_max = 100;
k=zeros(2,N);
k(:,1)=[0.4;0.6];
[w_1,f1] =burgers(n + c(1) * dt,uu + dt * (a(1,:) * k(:,iter)),iter,dx);
[w_2,f2] =burgers(n + c(2) * dt,uu + dt * (a(2,:) * k(:,iter)),iter,dx);
f1 = -k(1,iter) + f1;
f2 = -k(1,iter) + f2;
f(:,1)=f1;
f(:,2)=f2;
df = burJK(f,dx,iter+1);
while iter<iter_max-1 % K_newton
delta = df\f(iter,:)';
k(:,iter+1) = k(:,iter) - delta;
iter = iter+1;
[w_1,f1] =burgers(n + c(1) * dt,uu + dt * (a(1,:) * k(:,iter+1)),N,dx);
[w_2,f2] =burgers(n + c(2) * dt,uu + dt * (a(2,:) * k(:,iter+1)),N,dx);
f1 = -k(1,iter+1) + f1;
f2 = -k(1,iter+1) + f2;
f(:,1)=f1;
f(:,2)=f2;
df = burJK(f,dx,iter);
if iter>iter_max
disp('#');
else
disp('ok');
end
end