1

想象一下,你有五个国家在十年内的表现得分。您确实知道,某些国家/地区的表现在特定年份发生了很大变化。现在,您想知道它们的变化是积极的还是消极的。正是这最后一步让我感到困扰。

样本数据:

mydata<-1:3
mydata<-expand.grid(
country=c('A', 'B', 'C', 'D', 'E'),
year=c('1980','1981','1982','1983','1984','1985','1986','1987','1988','1989'))
mydata$score=sapply(runif(50,0,2), function(x) {round(x,4)})
library(reshape)
mydata<-reshape(mydata, v.names="score", idvar="year", timevar="country", direction="wide")

变更识别:

score.cols <- grep("score", colnames(mydata), value=TRUE)
period.cols <- gsub("score", "period", score.cols)
compute.period <- function(x)as.integer(c(NA, abs(diff(x)) >= 0.5))
cbind(mydata, `names<-`(lapply(mydata[score.cols], compute.period), period.cols))

> cbind(mydata, `names<-`(lapply(mydata[score.cols], compute.period), period.cols))
   year score.A score.B score.C score.D score.E period.A period.B period.C period.D period.E
1  1980  0.4029  0.3308  1.0432  0.7405  0.7254       NA       NA       NA       NA       NA
6  1981  1.7577  0.5479  1.4437  1.3996  0.8454        1        0        0        1        0
11 1982  1.9603  0.5404  1.2687  1.4317  0.0203        0        0        0        0        1
16 1983  0.5509  1.5834  1.3954  0.4935  0.4994        1        1        0        1        0
21 1984  1.9672  1.0628  1.8436  0.4327  0.0144        1        1        0        0        0
26 1985  1.6799  1.5873  0.5898  0.9553  1.3475        0        1        1        1        1
31 1986  1.2918  1.7049  0.3448  0.1841  0.9270        0        0        0        1        0
36 1987  0.1719  0.3297  0.6386  0.4075  1.8494        1        1        0        0        1
41 1988  0.7123  1.2378  0.9220  0.3278  1.5888        1        1        0        0        0
46 1989  0.2998  0.4418  1.0640  1.1405  0.7034        0        1        0        1        1

识别变化方向:

direct.cols<-gsub("score", "direction", score.cols)
compute.direction<-function(mydata){
for (i in 1:length(score.cols))
{ 
direct.cols[,i] <- ifelse((period.cols[i] == 1) & (score.cols[i] >= score.cols[i-1]), 1, 
+ ifelse((period.cols[i] == 1) & (score.cols[i] <= score.cols[i-1]), 2,
+ ifelse((period.cols[i] != 1), 0, NA)))
}}
cbind(mydata, `names<-`(lapply(mydata[score.cols], compute.direction), direct.cols))

问题: 运行最后一步时,我收到以下错误消息:

    Error in direct.cols[, i] <- ifelse((period.cols[i] == 1) & (score.cols[i] >=  : 
  incorrect number of subscripts on matrix

为什么?我做错了什么?

任何帮助将不胜感激。太感谢了。

这个问题建立在flodelMaiasaura对我之前提出的问题[https://stackoverflow.com/questions/12443202/how-to-get-the-difference-in-value-between-subsequent-observations-国年] .

4

2 回答 2

1

对象period.cols是一个向量,因此是一维的。采用

period.cols[i]

访问i它的 th 值。

于 2012-09-16T12:41:55.587 回答
1

如果您尝试复制我对上一个问题的建议(http://stackoverflow.com/questions/12443202/how-to-get-the-difference-in-value-between-subsequent-observations-country-year) ,那么您compute.diff应该是一个仅将分数向量作为输入的函数。它将应用于数据中的每个score.Ascore.B等列。所以你应该使用类似的东西:

compute.direction <- function(x) {
   x.diff <- c(NA, diff(x))
   ifelse(x.diff > 0.5, 1,
          ifelse(x.diff < -0.5, 2,
                 NA))
}

但是,请查看我对上一个问题的回答所做的编辑:您似乎越来越没有使用最佳数据结构。我建议您先处理原始数据(未重新整形的数据),而不是附加多个列块(五个 for period,五个 for ):direction

mydata <- within(mydata, period    <- ave(score, country, FUN = compute.period),
                         direction <- ave(score, country, FUN = compute.direction))

然后只重塑您的数据。

于 2012-09-16T13:23:20.627 回答