给定一个时域递归方程(例如您从维基百科引用的那个),使用以下属性可以相对容易地获得 z 域中的相应传递函数:
其中X(z)
和Y(z)
分别是时域输入序列x
和输出序列的 z 变换y
。反过来,给定一个传递函数,它可以表示为 z 中多项式的比率,例如:
传递函数的递推方程可以写成:
当然有许多不同的方法可以实现这样的递推方程,但是遵循直接形式 II的简单滤波器实现将沿着以下路线:
// Implementation of an Infinite Impulse Response (IIR) filter
// with recurrence equation:
// y[n] = -\sum_{i=1}^M a_i y[n-i] + \sum_{i=0}^N b_i x[n-i]
public class IIRFilter {
public IIRFilter(float a_[], float b_[]) {
// initialize memory elements
int N = Math.max(a_.length, b_.length);
memory = new float[N-1];
for (int i = 0; i < memory.length; i++) {
memory[i] = 0.0f;
}
// copy filter coefficients
a = new float[N];
int i = 0;
for (; i < a_.length; i++) {
a[i] = a_[i];
}
for (; i < N; i++) {
a[i] = 0.0f;
}
b = new float[N];
i = 0;
for (; i < b_.length; i++) {
b[i] = b_[i];
}
for (; i < N; i++) {
b[i] = 0.0f;
}
}
// Filter samples from input buffer, and store result in output buffer.
// Implementation based on Direct Form II.
// Works similar to matlab's "output = filter(b,a,input)" command
public void process(float input[], float output[]) {
for (int i = 0; i < input.length; i++) {
float in = input[i];
float out = 0.0f;
for (int j = memory.length-1; j >= 0; j--) {
in -= a[j+1] * memory[j];
out += b[j+1] * memory[j];
}
out += b[0] * in;
output[i] = out;
// shift memory
for (int j = memory.length-1; j > 0; j--) {
memory[j] = memory[j - 1];
}
memory[0] = in;
}
}
private float[] a;
private float[] b;
private float[] memory;
}
您可以使用它来实现您的特定传输功能,如下所示:
float g = 1.0f/32.0f; // overall filter gain
float[] a = {1, -2, 1};
float[] b = {g, 0, 0, 0, 0, 0, -2*g, 0, 0, 0, 0, 0, g};
IIRFilter filter = new IIRFilter(a, b);
filter.process(input, output);
请注意,您也可以将分子和分母分解为 2阶多项式并获得级联的 2阶滤波器(称为双二阶滤波器)。