6

我已经为一个蛋白质家族建立了一个系统发育树,该家族可以分成不同的组,根据受体类型或反应类型对每个组进行分类。树中的节点被标记为受体的类型。

在系统发育树中,我可以看到属于相同组或受体类型的蛋白质聚集在相同的分支中。所以我想折叠这些具有共同标签的分支,按给定的关键字列表对它们进行分组。

该命令将是这样的:

./collapse_tree_by_label -f phylogenetic_tree.newick -l list_of_labels_to_collapse.txt -o collapsed_tree.eps(或pdf)

我的 list_of_labels_to_collapse.txt 会是这样的: A B C D

我的 newick 树会是这样的: (A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6 ,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2)

没有折叠的输出图像是这样的:http: //i.stack.imgur.com/pHkoQ.png

输出图像折叠应该是这样的(collapsed_tree.eps):http: //i.stack.imgur.com/TLXd0.png

三角形的宽度应该代表分支的长度,三角形的高必须代表分支中的节点数。

我一直在玩 R 中的“ape”包。我能够绘制系统发育树,但我仍然不知道如何通过标签中的关键字折叠分支:

require("ape")

这将加载树:

cat("((A_1:0.05,A_2:0.03,A_3:0.2,A_4:0.1):0.9,(((B_1:0.05,B_2:0.02,B_3:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")

这里应该是要折叠的代码

这将绘制树:

plot(tree.test)
4

4 回答 4

4

您存储在 R 中的树已经将提示存储为多分法。这只是用表示多分法的三角形绘制树的问题。

我知道,没有任何功能ape可以做到这一点,但是如果你稍微弄乱了绘图功能,你可以把它拉下来

# Step 1: make edges for descendent nodes invisible in plot:
groups <- c("A", "B", "C", "D")
group_edges <- numeric(0)
for(group in groups){
  group_edges <- c(group_edges,getMRCA(tree.test,tree.test$tip.label[grepl(group, tree.test$tip.label)]))
}
edge.width <- rep(1, nrow(tree.test$edge))
edge.width[tree.test$edge[,1] %in% group_edges ] <- 0


# Step 2: plot the tree with the hidden edges
plot(tree.test, show.tip.label = F, edge.width = edge.width)

# Step 3: add triangles
add_polytomy_triangle <- function(phy, group){
  root <- length(phy$tip.label)+1
  group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
  group_nodes <- which(phy$tip.label %in% group_node_labels)
  group_mrca <- getMRCA(phy,group_nodes)

  tip_coord1 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[1])
  tip_coord2 <- c(dist.nodes(phy)[root, group_nodes[1]], group_nodes[length(group_nodes)])
  node_coord <- c(dist.nodes(phy)[root, group_mrca], mean(c(tip_coord1[2], tip_coord2[2])))

  xcoords <- c(tip_coord1[1], tip_coord2[1], node_coord[1])
  ycoords <- c(tip_coord1[2], tip_coord2[2], node_coord[2])
  polygon(xcoords, ycoords)
}

然后你只需要遍历组来添加三角形

for(group in groups){
  add_polytomy_triangle(tree.test, group)
}
于 2015-12-21T22:12:21.333 回答
3

我也一直在寻找这种工具,而不是用于折叠分类组,而是用于折叠基于数值支持值的内部节点。

ape 包中的di2multi函数可以将节点折叠为多分体,但它目前只能通过分支长度阈值来做到这一点。这是一个粗略的改编,它允许通过节点支持值阈值来折叠(默认阈值 = 0.5)。

使用风险自负,但它适用于我的根贝叶斯树。

di2multi4node <- function (phy, tol = 0.5) 
  # Adapted di2multi function from the ape package to plot polytomies
  # based on numeric node support values
  # (di2multi does this based on edge lengths)
  # Needs adjustment for unrooted trees as currently skips the first edge
{
  if (is.null(phy$edge.length)) 
    stop("the tree has no branch length")
  if (is.na(as.numeric(phy$node.label[2])))
    stop("node labels can't be converted to numeric values")
  if (is.null(phy$node.label))
    stop("the tree has no node labels")
  ind <- which(phy$edge[, 2] > length(phy$tip.label))[as.numeric(phy$node.label[2:length(phy$node.label)]) < tol]
  n <- length(ind)
  if (!n) 
    return(phy)
  foo <- function(ancestor, des2del) {
    wh <- which(phy$edge[, 1] == des2del)
    for (k in wh) {
      if (phy$edge[k, 2] %in% node2del) 
        foo(ancestor, phy$edge[k, 2])
      else phy$edge[k, 1] <<- ancestor
    }
  }
  node2del <- phy$edge[ind, 2]
  anc <- phy$edge[ind, 1]
  for (i in 1:n) {
    if (anc[i] %in% node2del) 
      next
    foo(anc[i], node2del[i])
  }
  phy$edge <- phy$edge[-ind, ]
  phy$edge.length <- phy$edge.length[-ind]
  phy$Nnode <- phy$Nnode - n
  sel <- phy$edge > min(node2del)
  for (i in which(sel)) phy$edge[i] <- phy$edge[i] - sum(node2del < 
                                                           phy$edge[i])
  if (!is.null(phy$node.label)) 
    phy$node.label <- phy$node.label[-(node2del - length(phy$tip.label))]
  phy
}
于 2016-01-08T06:53:43.003 回答
2

这是我基于phytools::phylo.toBackbone功能的答案,请参阅http://blog.phytools.org/2013/09/even-more-on-plotting-subtrees-as.htmlhttp://blog.phytools.org/2013/ 10/finding-edge-lengths-of-all-terminal.html。首先,在代码末尾加载函数。

library(ape)
library(phytools)  #phylo.toBackbone
library(phangorn) 

cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);"
    , file = "ex.tre", sep = "\n")

phy <- read.tree("ex.tre")
groups <- c("A", "B|C", "D") 

backboneoftree<-makebackbone(groups,phy)
#   tip.label clade.label  N     depth
# 1       A_1           A 10 0.2481818
# 2       B_1         B|C  6 0.9400000
# 3       D_1           D  5 0.4600000
    
{
    tryCatch(dev.off(),error=function(e){""})
    par(fig=c(0,0.5,0,1), mar = c(0, 0, 2, 0))
    plot(phy, main="Original" )
    par(fig=c(0.5,1,0,1), oma = c(0, 0, 1.2, 0), xpd=NA, new=T)
    plot(backboneoftree)
    title(main="Clades")
}

makebackbone <- function(groupings,phy){ 
    
    listofspecies  <- phy$tip.label
    listtopreserve <- character()
    newedgelengths <- meandistnode<- lengthofclades<- numeric()
    
    for (i in 1:length(groupings)){
        bestmrca<-getMRCA(phy,grep(groupings[i], phy$tip.label) )
        mrcatips<-phy$tip.label[unlist(phangorn::Descendants(phy,bestmrca, type="tips") )]
        listtopreserve[i] <- mrcatips[1]
        meandistnode[i]   <- mean(dist.nodes(phy)[unlist(lapply(mrcatips,  
                                  function(x) grep(x, phy$tip.label) ) ),bestmrca] )
        lengthofclades[i] <- length(mrcatips)
        provtree          <- drop.tip(phy,mrcatips, trim.internal=F, subtree = T)
        n3                <- length(provtree$tip.label)
        newedgelengths[i] <- setNames(provtree$edge.length[sapply(1:n3,function(x,y) 
            which(y==x),
            y=provtree$edge[,2])],
            provtree$tip.label)[provtree$tip.label[grep("tips",provtree$tip.label)] ]
    }  
    newtree <- drop.tip(phy,setdiff(listofspecies,listtopreserve), 
                      trim.internal = T)
    n       <- length(newtree$tip.label)
    
    newtree$edge.length[sapply(1:n,function(x,y) 
        which(y==x),
        y=newtree$edge[,2])] <- newedgelengths + meandistnode
    
    trans           <- data.frame(tip.label=newtree$tip.label,clade.label=groupings,
                              N=lengthofclades, depth=meandistnode )
    rownames(trans) <- NULL
    print(trans)
    backboneoftree  <- phytools::phylo.toBackbone(newtree,trans)
    return(backboneoftree)
}

在此处输入图像描述

编辑:我没有尝试过这个,但它可能是另一个答案:“脚本和函数来转换树的尖端分支,即厚度或三角形,两者的宽度与某些参数相关(例如,物种数进化枝)(tip.branches.R)” https://www.en.sysbot.bio.lmu.de/people/employees/cusimano/use_r/index.html

于 2017-07-21T22:44:20.293 回答
1

我认为脚本终于做了我想做的事。根据@CactusWoman 提供的答案,我稍微更改了代码,因此脚本将尝试找到代表与我的搜索模式匹配的最大分支的 MRCA。这解决了不合并非多组分支或折叠整棵树的问题,因为一个匹配节点错误地位于正确分支之外。

此外,我还包含了一个参数,该参数表示给定分支中模式丰度比的限制,因此我们可以选择并折叠/分组具有至少 90% 的提示与搜索模式匹配的分支。

library(geiger)
library(phylobase)
library(ape)

#functions
find_best_mrca <- function(phy, group, threshold){

     group_matches <- phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)]
     group_mrca <- getMRCA(phy,phy$tip.label[grepl(group, phy$tip.label, ignore.case=TRUE)])
     group_leaves <- tips(phy, group_mrca)
     match_ratio <- length(group_matches)/length(group_leaves)

      if( match_ratio < threshold){

           #start searching for children nodes that have more than 95% of descendants matching to the search pattern
           mrca_children <- descendants(as(phy,"phylo4"), group_mrca, type="all")
           i <- 1
           new_ratios <- NULL
           nleaves <- NULL
           names(mrca_children) <- NULL

           for(new_mrca in mrca_children){
                child_leaves <- tips(tree.test, new_mrca)
                child_matches <- grep(group, child_leaves, ignore.case=TRUE)
                new_ratios[i] <- length(child_matches)/length(child_leaves)
                nleaves[i] <- length(tips(phy, new_mrca))
                i <- i+1
           }



           match_result <- data.frame(mrca_children, new_ratios, nleaves)


           match_result_sorted <- match_result[order(-match_result$nleaves,match_result$new_ratios),]
           found <- numeric(0);

           print(match_result_sorted)

           for(line in 1:nrow(match_result_sorted)){
                 if(match_result_sorted$ new_ratios[line]>=threshold){
                     return(match_result_sorted$mrca_children[line])
                     found <- 1
                 }

           }

           if(found==0){return(found)}
      }else{return(group_mrca)}




}

add_triangle <- function(phy, group,phylo_plot){

     group_node_labels <- phy$tip.label[grepl(group, phy$tip.label)]
     group_mrca <- getMRCA(phy,group_node_labels)
     group_nodes <- descendants(as(tree.test,"phylo4"), group_mrca, type="tips")
     names(group_nodes) <- NULL

     x<-phylo_plot$xx
     y<-phylo_plot$yy


     x1 <- max(x[group_nodes])
     x2 <-max(x[group_nodes])
     x3 <- x[group_mrca]

     y1 <- min(y[group_nodes])
     y2 <- max(y[group_nodes])
     y3 <-  y[group_mrca]

     xcoords <- c(x1,x2,x3)
     ycoords <- c(y1,y2,y3)

     polygon(xcoords, ycoords)

     return(c(x2,y3))

}



#main

  cat("((A_1:0.05,E_2:0.03,A_3:0.2,A_4:0.1,A_5:0.1,A_6:0.1,A_7:0.35,A_8:0.4,A_9:01,A_10:0.2):0.9,((((B_1:0.05,B_2:0.05):0.5,B_3:0.02,B_4:0.04):0.6,(C_1:0.6,C_2:0.08):0.7):0.5,(D_1:0.3,D_2:0.4,D_3:0.5,D_4:0.7,D_5:0.4):1.2):0.5);", file = "ex.tre", sep = "\n")
tree.test <- read.tree("ex.tre")


# Step 1: Find the best MRCA that matches to the keywords or search patten

groups <- c("A", "B|C", "D")
group_labels <- groups

group_edges <- numeric(0)
edge.width <- rep(1, nrow(tree.test$edge))
count <- 1


for(group in groups){

    best_mrca <- find_best_mrca(tree.test, group, 0.90)

    group_leaves <- tips(tree.test, best_mrca)

    groups[count] <- paste(group_leaves, collapse="|")
    group_edges <- c(group_edges,best_mrca)

    #Step2: Remove the edges of the branches that will be collapsed, so they become invisible
    edge.width[tree.test$edge[,1] %in% c(group_edges[count],descendants(as(tree.test,"phylo4"), group_edges[count], type="all")) ] <- 0
    count = count +1

}


#Step 3: plot the tree hiding the branches that will be collapsed/grouped

last_plot.phylo <- plot(tree.test, show.tip.label = F, edge.width = edge.width)

#And save a copy of the plot so we can extract the xy coordinates of the nodes
#To get the x & y coordinates of a plotted tree created using plot.phylo
#or plotTree, we can steal from inside tiplabels:
last_phylo_plot<-get("last_plot.phylo",envir=.PlotPhyloEnv)

#Step 4: Add triangles and labels to the collapsed nodes
for(i in 1:length(groups)){

  text_coords <- add_triangle(tree.test, groups[i],last_phylo_plot)

  text(text_coords[1],text_coords[2],labels=group_labels[i], pos=4)

}
于 2015-12-22T22:30:34.190 回答