通过数值积分解决问题的首选方法是什么?
我希望执行数值积分的具体功能是
integral_0^infinity (sin(s tan^(-1)(t)))/((1+t^2)^(s/2) (e^(pi t)+1)) dt
用 Wolfram 写这个就表明了这一点。
辛普森的方法比梯形方法更受欢迎吗?您是否使用此处找到的辛普森 3/8 规则?
这是一个深奥的主题,是否有人对特定方法有个人偏好?
我在 RosettaCode 中找到了以下示例 -
class NumericalIntegration
{
interface FPFunction
{
double eval(double n);
}
public static double rectangularLeft(double a, double b, int n, FPFunction f)
{
return rectangular(a, b, n, f, 0);
}
public static double rectangularMidpoint(double a, double b, int n, FPFunction f)
{
return rectangular(a, b, n, f, 1);
}
public static double rectangularRight(double a, double b, int n, FPFunction f)
{
return rectangular(a, b, n, f, 2);
}
public static double trapezium(double a, double b, int n, FPFunction f)
{
double range = checkParamsGetRange(a, b, n);
double nFloat = (double)n;
double sum = 0.0;
for (int i = 1; i < n; i++)
{
double x = a + range * (double)i / nFloat;
sum += f.eval(x);
}
sum += (f.eval(a) + f.eval(b)) / 2.0;
return sum * range / nFloat;
}
public static double simpsons(double a, double b, int n, FPFunction f)
{
double range = checkParamsGetRange(a, b, n);
double nFloat = (double)n;
double sum1 = f.eval(a + range / (nFloat * 2.0));
double sum2 = 0.0;
for (int i = 1; i < n; i++)
{
double x1 = a + range * ((double)i + 0.5) / nFloat;
sum1 += f.eval(x1);
double x2 = a + range * (double)i / nFloat;
sum2 += f.eval(x2);
}
return (f.eval(a) + f.eval(b) + sum1 * 4.0 + sum2 * 2.0) * range / (nFloat * 6.0);
}
private static double rectangular(double a, double b, int n, FPFunction f, int mode)
{
double range = checkParamsGetRange(a, b, n);
double modeOffset = (double)mode / 2.0;
double nFloat = (double)n;
double sum = 0.0;
for (int i = 0; i < n; i++)
{
double x = a + range * ((double)i + modeOffset) / nFloat;
sum += f.eval(x);
}
return sum * range / nFloat;
}
private static double checkParamsGetRange(double a, double b, int n)
{
if (n <= 0)
throw new IllegalArgumentException("Invalid value of n");
double range = b - a;
if (range <= 0)
throw new IllegalArgumentException("Invalid range");
return range;
}
private static void testFunction(String fname, double a, double b, int n, FPFunction f)
{
System.out.println("Testing function \"" + fname + "\", a=" + a + ", b=" + b + ", n=" + n);
System.out.println("rectangularLeft: " + rectangularLeft(a, b, n, f));
System.out.println("rectangularMidpoint: " + rectangularMidpoint(a, b, n, f));
System.out.println("rectangularRight: " + rectangularRight(a, b, n, f));
System.out.println("trapezium: " + trapezium(a, b, n, f));
System.out.println("simpsons: " + simpsons(a, b, n, f));
System.out.println();
return;
}
public static void main(String[] args)
{
testFunction("x^3", 0.0, 1.0, 100, new FPFunction() {
public double eval(double n) {
return n * n * n;
}
}
);
testFunction("1/x", 1.0, 100.0, 1000, new FPFunction() {
public double eval(double n) {
return 1.0 / n;
}
}
);
testFunction("x", 0.0, 5000.0, 5000000, new FPFunction() {
public double eval(double n) {
return n;
}
}
);
testFunction("x", 0.0, 6000.0, 6000000, new FPFunction() {
public double eval(double n) {
return n;
}
}
);
return;
}
}
我写了梯形方法的变体。我正在寻求改进,使其更准确。
public class AbelMain {
public static void main(String[] args) {
AbelMain();
//System.out.println(Math.pow(1.92, -77));
}
public static void AbelMain() {
double s = 0;
double start, stop, totalTime;
Scanner scan = new Scanner(System.in);
System.out.print("Enter the value of s inside the Riemann Zeta " +
"Function: ");
try {
s = scan.nextDouble();
}
catch (Exception e) {
System.out.println("Please enter a valid number for s.");
}
start = System.currentTimeMillis();
System.out.println("The value for Zeta(s) is " + AbelPlana(s));
stop = System.currentTimeMillis();
totalTime = (double) (stop-start) / 1000.0;
System.out.println("Total time taken is " + totalTime + " seconds.");
}
// The definite integral for Zeta(s) in the Abel Plana formula.
// Numerator = Sin(s * arctan(t))
// Denominator = (1 + t^2)^(s/2) * (e^(pi*t) + 1)
public static double function(double x, double s) {
double num = Math.sin(s * Math.atan(x));
double den = Math.pow((1.0 + Math.pow(x, 2.0)), s / 2.0) *
(Math.pow(Math.E, Math.PI * x) + 1.0);
return num / den;
}
// Evaulates the integral through the Trapezoidal Method.
// The integral starts at a and ends at b.
// A third parameter is introduced for the step size
static double trapIntegrate(double a, double b, int step, double s) {
double dx = (b - a) / step; // step size
double sum = 0.5 * (function(a, s) + function(b, s)); // area
for (int i = 1; i < step; i++) {
double x = a + dx * i;
sum = sum + function(x, s);
}
return sum * dx;
}
// Returns an approximate sum of Zeta(s) through Simpson's rule.
public static double AbelPlana(double s) {
double C1 = Math.pow(2.0, s - 1.0) / (s - 1.0);
double C2 = Math.pow(2.0, s);
return C1 - C2 *trapIntegrate(0, 100, 1000, s);
}
}