我在 PCA 转换后进行聚类,我想可视化 PCA 空间的前两个或三个维度中的聚类结果,以及原始轴对投影 PCA 的贡献。
我使用factoextra
使用 ggplot 的库,它工作正常,但我想取消图例:
我的代码:
# Load iris dataset
data(iris)
# PCA
pca <- prcomp(iris[,-5], scale=TRUE)
df.pca <- pca$x
# Cluster over the three first PCA dimensions
kc <- kmeans(df.pca[,1:3], 5)
# 2-D biplot (how to get rid of legend?)
# install.packages("devtools")
# library("devtools")
# install_github("kassambara/factoextra")
library(factoextra)
fviz_pca_biplot(pca, label="var", habillage=as.factor(kc$cluster)) +
labs(color=NULL) + ggtitle("") +
theme(text = element_text(size = 15),
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"),
legend.key = element_rect(fill = "white"))
如何删除右侧的图例列?
不使用任何库的等效双图也是一个受欢迎的解决方案。
PS:
即使在 3-D 中也很容易获得一个好的双标图:
library(rgl)
text3d(pca$x[,1:3],texts=rep("*",dim(pca$x)[1]), col=kc$cluster) # points
text3d(1*pca$rotation[,1:3], texts=rownames(pca$rotation), col="red") # arrows title
coords <- NULL
for (i in 1:nrow(pca$rotation)) {
coords <- rbind(coords, rbind(c(0,0,0),1*pca$rotation[i,1:3]))
}
lines3d(coords, col="blue", lwd=1)