我没有猜测,而是决定用一小段 C++ 代码和一个有点旧的 Linux 安装来实际查看生成的代码。
class MyException
{
public:
MyException() { }
~MyException() { }
};
void my_throwing_function(bool throwit)
{
if (throwit)
throw MyException();
}
void another_function();
void log(unsigned count);
void my_catching_function()
{
log(0);
try
{
log(1);
another_function();
log(2);
}
catch (const MyException& e)
{
log(3);
}
log(4);
}
我用 编译它g++ -m32 -W -Wall -O3 -save-temps -c
,并查看生成的程序集文件。
.file "foo.cpp"
.section .text._ZN11MyExceptionD1Ev,"axG",@progbits,_ZN11MyExceptionD1Ev,comdat
.align 2
.p2align 4,,15
.weak _ZN11MyExceptionD1Ev
.type _ZN11MyExceptionD1Ev, @function
_ZN11MyExceptionD1Ev:
.LFB7:
pushl %ebp
.LCFI0:
movl %esp, %ebp
.LCFI1:
popl %ebp
ret
.LFE7:
.size _ZN11MyExceptionD1Ev, .-_ZN11MyExceptionD1Ev
_ZN11MyExceptionD1Ev
是MyException::~MyException()
,所以编译器决定它需要析构函数的非内联副本。
.globl __gxx_personality_v0
.globl _Unwind_Resume
.text
.align 2
.p2align 4,,15
.globl _Z20my_catching_functionv
.type _Z20my_catching_functionv, @function
_Z20my_catching_functionv:
.LFB9:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
pushl %ebx
.LCFI4:
subl $20, %esp
.LCFI5:
movl $0, (%esp)
.LEHB0:
call _Z3logj
.LEHE0:
movl $1, (%esp)
.LEHB1:
call _Z3logj
call _Z16another_functionv
movl $2, (%esp)
call _Z3logj
.LEHE1:
.L5:
movl $4, (%esp)
.LEHB2:
call _Z3logj
addl $20, %esp
popl %ebx
popl %ebp
ret
.L12:
subl $1, %edx
movl %eax, %ebx
je .L16
.L14:
movl %ebx, (%esp)
call _Unwind_Resume
.LEHE2:
.L16:
.L6:
movl %eax, (%esp)
call __cxa_begin_catch
movl $3, (%esp)
.LEHB3:
call _Z3logj
.LEHE3:
call __cxa_end_catch
.p2align 4,,3
jmp .L5
.L11:
.L8:
movl %eax, %ebx
.p2align 4,,6
call __cxa_end_catch
.p2align 4,,6
jmp .L14
.LFE9:
.size _Z20my_catching_functionv, .-_Z20my_catching_functionv
.section .gcc_except_table,"a",@progbits
.align 4
.LLSDA9:
.byte 0xff
.byte 0x0
.uleb128 .LLSDATT9-.LLSDATTD9
.LLSDATTD9:
.byte 0x1
.uleb128 .LLSDACSE9-.LLSDACSB9
.LLSDACSB9:
.uleb128 .LEHB0-.LFB9
.uleb128 .LEHE0-.LEHB0
.uleb128 0x0
.uleb128 0x0
.uleb128 .LEHB1-.LFB9
.uleb128 .LEHE1-.LEHB1
.uleb128 .L12-.LFB9
.uleb128 0x1
.uleb128 .LEHB2-.LFB9
.uleb128 .LEHE2-.LEHB2
.uleb128 0x0
.uleb128 0x0
.uleb128 .LEHB3-.LFB9
.uleb128 .LEHE3-.LEHB3
.uleb128 .L11-.LFB9
.uleb128 0x0
.LLSDACSE9:
.byte 0x1
.byte 0x0
.align 4
.long _ZTI11MyException
.LLSDATT9:
惊喜!正常的代码路径上根本没有额外的指令。相反,编译器生成了额外的离线修复代码块,通过函数末尾的表引用(实际上放在可执行文件的单独部分中)。_ZTI11MyException
所有工作都由标准库在这些表 ( is )的基础上在幕后完成typeinfo for MyException
。
好的,这对我来说并不意外,我已经知道这个编译器是如何做到的。继续汇编输出:
.text
.align 2
.p2align 4,,15
.globl _Z20my_throwing_functionb
.type _Z20my_throwing_functionb, @function
_Z20my_throwing_functionb:
.LFB8:
pushl %ebp
.LCFI6:
movl %esp, %ebp
.LCFI7:
subl $24, %esp
.LCFI8:
cmpb $0, 8(%ebp)
jne .L21
leave
ret
.L21:
movl $1, (%esp)
call __cxa_allocate_exception
movl $_ZN11MyExceptionD1Ev, 8(%esp)
movl $_ZTI11MyException, 4(%esp)
movl %eax, (%esp)
call __cxa_throw
.LFE8:
.size _Z20my_throwing_functionb, .-_Z20my_throwing_functionb
在这里,我们看到了引发异常的代码。虽然仅仅因为可能会抛出异常而没有额外的开销,但在实际抛出和捕获异常时显然有很多开销。其中大部分都隐藏在 中__cxa_throw
,它必须:
- 在异常表的帮助下遍历堆栈,直到找到该异常的处理程序。
- 展开堆栈,直到它到达该处理程序。
- 实际上调用处理程序。
将其与简单地返回一个值的成本进行比较,您就会明白为什么异常应该只用于异常返回。
最后,汇编文件的其余部分:
.weak _ZTI11MyException
.section .rodata._ZTI11MyException,"aG",@progbits,_ZTI11MyException,comdat
.align 4
.type _ZTI11MyException, @object
.size _ZTI11MyException, 8
_ZTI11MyException:
.long _ZTVN10__cxxabiv117__class_type_infoE+8
.long _ZTS11MyException
.weak _ZTS11MyException
.section .rodata._ZTS11MyException,"aG",@progbits,_ZTS11MyException,comdat
.type _ZTS11MyException, @object
.size _ZTS11MyException, 14
_ZTS11MyException:
.string "11MyException"
类型信息数据。
.section .eh_frame,"a",@progbits
.Lframe1:
.long .LECIE1-.LSCIE1
.LSCIE1:
.long 0x0
.byte 0x1
.string "zPL"
.uleb128 0x1
.sleb128 -4
.byte 0x8
.uleb128 0x6
.byte 0x0
.long __gxx_personality_v0
.byte 0x0
.byte 0xc
.uleb128 0x4
.uleb128 0x4
.byte 0x88
.uleb128 0x1
.align 4
.LECIE1:
.LSFDE3:
.long .LEFDE3-.LASFDE3
.LASFDE3:
.long .LASFDE3-.Lframe1
.long .LFB9
.long .LFE9-.LFB9
.uleb128 0x4
.long .LLSDA9
.byte 0x4
.long .LCFI2-.LFB9
.byte 0xe
.uleb128 0x8
.byte 0x85
.uleb128 0x2
.byte 0x4
.long .LCFI3-.LCFI2
.byte 0xd
.uleb128 0x5
.byte 0x4
.long .LCFI5-.LCFI3
.byte 0x83
.uleb128 0x3
.align 4
.LEFDE3:
.LSFDE5:
.long .LEFDE5-.LASFDE5
.LASFDE5:
.long .LASFDE5-.Lframe1
.long .LFB8
.long .LFE8-.LFB8
.uleb128 0x4
.long 0x0
.byte 0x4
.long .LCFI6-.LFB8
.byte 0xe
.uleb128 0x8
.byte 0x85
.uleb128 0x2
.byte 0x4
.long .LCFI7-.LCFI6
.byte 0xd
.uleb128 0x5
.align 4
.LEFDE5:
.ident "GCC: (GNU) 4.1.2 (Ubuntu 4.1.2-0ubuntu4)"
.section .note.GNU-stack,"",@progbits
更多异常处理表,以及各种额外信息。
因此,至少对于 Linux 上的 GCC 来说,结论是:无论是否抛出异常,成本都是额外的空间(用于处理程序和表),加上在抛出异常时解析表和执行处理程序的额外成本。如果您使用异常而不是错误代码,并且错误很少见,则可以更快,因为您不再需要测试错误的开销。
如果您想了解更多信息,特别是所有__cxa_
功能的作用,请参阅它们来自的原始规范: