这是你想要的吗?
加载您的数据片段:
txt <- '"Group.1" "S.obs" "se.obs" "S.chao1" "se.chao1"
"Cliona celata complex" 499.7143 59.32867 850.6860 65.16366
"Cliona viridis" 285.5000 51.68736 462.5465 45.57289
"Dysidea fragilis" 358.6667 61.03096 701.7499 73.82693
"Phorbas fictitius" 525.9167 24.66763 853.3261 57.73494'
dat <- read.table(text = txt, header = TRUE)
并加载一些包。特别是,我将使用tidyr进行数据操作,这并不适合熔铸或重塑概念
library("ggplot2")
library("tidyr")
这三个步骤以合适的格式获取数据。首先我们收集变量,这就像melt()
但我们需要告诉它哪个变量不收集,即哪个变量是id
变量
mdat <- gather(dat, S, value, -Group.1)
S
是我要创建的包含变量名称value
的列,是我要创建的包含来自所选列的数据的列的名称,并且- Group.1
意味着对除group.1
. 这给出了:
Group.1 S value
1 Cliona celata complex S.obs 499.71430
2 Cliona viridis S.obs 285.50000
3 Dysidea fragilis S.obs 358.66670
4 Phorbas fictitius S.obs 525.91670
5 Cliona celata complex se.obs 59.32867
6 Cliona viridis se.obs 51.68736
7 Dysidea fragilis se.obs 61.03096
8 Phorbas fictitius se.obs 24.66763
9 Cliona celata complex S.chao1 850.68600
10 Cliona viridis S.chao1 462.54650
11 Dysidea fragilis S.chao1 701.74990
12 Phorbas fictitius S.chao1 853.32610
13 Cliona celata complex se.chao1 65.16366
14 Cliona viridis se.chao1 45.57289
15 Dysidea fragilis se.chao1 73.82693
16 Phorbas fictitius se.chao1 57.73494
接下来,我希望将S
句点 ( ) 上的变量数据拆分.
为两个变量,我将其称为type
和var
。type
包含值S
或se
并且var
包含obs
或chao1
mdat <- separate(mdat, S, c("type","var"))
这使:
Group.1 type var value
1 Cliona celata complex S obs 499.71430
2 Cliona viridis S obs 285.50000
3 Dysidea fragilis S obs 358.66670
4 Phorbas fictitius S obs 525.91670
5 Cliona celata complex se obs 59.32867
6 Cliona viridis se obs 51.68736
7 Dysidea fragilis se obs 61.03096
8 Phorbas fictitius se obs 24.66763
9 Cliona celata complex S chao1 850.68600
10 Cliona viridis S chao1 462.54650
11 Dysidea fragilis S chao1 701.74990
12 Phorbas fictitius S chao1 853.32610
13 Cliona celata complex se chao1 65.16366
14 Cliona viridis se chao1 45.57289
15 Dysidea fragilis se chao1 73.82693
16 Phorbas fictitius se chao1 57.73494
数据处理的最后一步是展开当前紧凑的数据,以便我们有列S
和se
,我们这样做spread()
(这有点像重塑)
mdat <- spread(mdat, type, value)
这给了我们
mdat
> mdat
Group.1 var S se
1 Cliona celata complex chao1 850.6860 65.16366
2 Cliona celata complex obs 499.7143 59.32867
3 Cliona viridis chao1 462.5465 45.57289
4 Cliona viridis obs 285.5000 51.68736
5 Dysidea fragilis chao1 701.7499 73.82693
6 Dysidea fragilis obs 358.6667 61.03096
7 Phorbas fictitius chao1 853.3261 57.73494
8 Phorbas fictitius obs 525.9167 24.66763
现在完成了,我们可以绘制
ggplot(mdat, aes(x = Group.1, y = S, fill = var)) +
geom_bar(position = "dodge", stat = "identity") +
geom_errorbar(mapping = aes(ymax = S + se, ymin = S - se),
position = position_dodge(width=0.9), width = 0.25)
您只需要一次调用,geom_errorbar()
因为它具有美观性ymax
并且ymin
可以同时设置。
这给出了产品
