I'm using matplotlib's magnitude_spectrum to compare the tonal characteristics of guitar strings. Magnitude_spectrum shows the y axis as having units of "Magnitude (energy)". I use two different 'processes' to compare the FFT. Process 2 (for lack of a better description) is much easier to interpret- code & graphs below
My questions are:
- In terms of units, what does "Magnitude (energy)" mean and how does it relate to dB?
- Using #Process 2 (see code & graphs below), what type of units am I looking at, dB?
- If #Process 2 is not dB, then what is the best way to scale it to dB?
My code below (simplified) shows an example of what I'm talking about/looking at.
import numpy as np
from scipy.io.wavfile import read
from pylab import plot
from pylab import plot, psd, magnitude_spectrum
import matplotlib.pyplot as plt
#Hello Signal!!!
(fs, x) = read('C:\Desktop\Spectral Work\EB_AB_1_2.wav')
#Remove silence out of beginning of signal with threshold of 1000
def indices(a, func):
#This allows to use the lambda function for equivalent of find() in matlab
return [i for (i, val) in enumerate(a) if func(val)]
#Make the signal smaller so it uses less resources
x_tiny = x[0:100000]
#threshold is 1000, 0 is calling the first index greater than 1000
thresh = indices(x_tiny, lambda y: y > 1000)[1]
# backs signal up 20 bins, so to not ignore the initial pluck sound...
thresh_start = thresh-20
#starts at threshstart ends at end of signal (-1 is just a referencing thing)
analysis_signal = x[thresh_start-1:]
#Split signal so it is 1 second long
one_sec = 1*fs
onesec = x[thresh_start-1:one_sec+thresh_start-1]
#process 1
(spectrum, freqs, _) = magnitude_spectrum(onesec, Fs=fs)
#process 2
spectrum1 = spectrum/len(spectrum)
I don't know how to bulk process on multiple .wav files so I run this code separately on a whole bunch of different .wav files and i put them into excel to compare. But for the sake of not looking at ugly graphs, I graphed it in Python. Here's what #process1 and #process2 look like when graphed: