我正在用 Python 编写一个代码来预测氢的能级,我将用它作为研究夸克能级的模板。我正在使用该scipy.integrate.odeint()
函数来求解 Shroedinger 方程,它适用于高达n=6
. 我不认为我有太多需要超越这一点,但 odeint 的回报Excess work done on this call (perhaps wrong Dfun type).
只会鼓励我扩展我可以预测的内容。
我使用的薛定谔方程替换是:
u'' - (l*(l+1)/r**2 - 2mu_e(E-V_emag(r))) * u = 0
=>
u' = v
v' = ((l*(l+1))/(r**2) - 2.0*mu_e*(E - V_emag(r)))*u
然后我使用scipy.integrate.odeint()
它并遍历能量并使用我定义的其他函数来评估结果中的转折点和节点。我找到能级的方法是找到可能的最低 E 值,其中转折点和节点的数量与其应该匹配;然后递增L
1 并找到新的地面能量,例如,如果L=0
我会找到n=1
能量,如果L=3
,我会找到n=2
能量。
一旦代码增加到L=7
它不会返回任何有用的东西。的范围r
已经扩大,但我尝试保持不变以减少步骤数,但无济于事。该代码是自学的,所以在我的研究中,我读到了有关 Jacobians 的内容。恐怕我还没有弄清楚它们是什么,或者我是否需要一个。有任何想法吗?
def v_emag(r):
v = -alpha/r
return v
def s_e(y,r,l,E): #Shroedinger equation for electromagntism
x = numpy.zeros_like(y)
x[0] = y[1]
x[1] = ((l*(l+1))/(r**2) - 2.0*mu_e*(E - V_emag(r)))*y[0]
return x
def i_s_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
r = numpy.arange(start,stop,step)
y = odeint(s_e,y0,r,args=(l,E))
return y
def inormalise_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
r = numpy.arange(start,stop,step)
f = i_s_e(l,E,start,stop,step)[:,0]
f2 = f**2
area = numpy.trapz(f2,x=r)
return f/(numpy.sqrt(area))
def inodes_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
x = i_s_e(l,E,start,stop,step)
r = numpy.arange(start,stop,step)
k=0
for i in range(len(r)-1):
if x[i,0]*x[i+1,0] < 0: #If u value times next u value <0,
k+=1 #crossing of u=0 has occured, therefore count node
return k
def iturns_e(l,E,start=0.001,stop=None,step=(0.005*bohr)):
if stop is None:
stop = ((l+1)*30-10)*bohr
x = i_s_e(l,E,start,stop,step)
r = numpy.arange(start,stop,step)
k = 0
for i in range(len(r)-1):
if x[i,1]*x[i+1,1] < 0: #If du/dr value times next du/dr value <0,
k=k+1 #crossing of du/dr=0, therefore a maximum/minimum
return k
l = 0
while l < 10: #The ground state for a system with a non-zero angular momentum will
E1 = -1.5e-08 #be the energy level of principle quantum number l-1, therefore
E3 = 0 #by changing l, we can find n by searching for the ground state
E2 = 0.5*(E1+E3)
i = 0
while i < 40:
N1 = inodes_e(l,E1)
N2 = inodes_e(l,E2)
N3 = inodes_e(l,E3)
T1 = iturns_e(l,E1)
T2 = iturns_e(l,E2)
T3 = iturns_e(l,E3)
if N1 != N2:# and T1 != T2: #Looks in lower half first, therefore will tend to ground state
E3 = E2
E2 = 0.5*(E1+E3)
elif N2 != N3:# and T2 != T3:
E1 = E2
E2 = 0.5*(E1+E3)
else:
print "Can't find satisfactory E in range"
break
i += 1
x = inormalise_e(l,E2)
if x[((l+1)**2)/0.005] > (x[2*((l+1)**2)/0.005]) and iturns_e(l,E2+1e-20)==1:
print 'Energy of state: n =',(l+1),'is: ',(E2*(10**9)),'eV'
l += 1
else:
E1 = E2+10e-20