所以,因为我已经使用 RGB 直方图实现了基本的 cbir 系统。现在,我正在尝试生成平均精度和排名曲线。我需要知道,我的平均精度公式是否正确?以及如何计算平均排名?
Code:
% Dir: parent directory location for images folder c1, c2, c3
% inputImage: \c1\1.ppm
% For example to get P-R curve execute: CBIR('D:\visionImages','\c2\1.ppm');
function [ ] = demoCBIR( Dir,inputImage)
% Dir='D:\visionImages';
% inputImage='\c3\1.ppm';
tic;
S=strcat(Dir,inputImage);
Inp1=imread(S);
num_red_bins = 8;
num_green_bins = 8;
num_blue_bins = 8;
num_bins = num_red_bins*num_green_bins*num_blue_bins;
A = imcolourhist(Inp1, num_red_bins, num_green_bins, num_blue_bins);%input image histogram
srcFiles = dir(strcat(Dir,'\*.jpg'));
B = zeros(num_bins, 100); % hisogram of other 100 images in category 1
ptr=1;
for i = 1 : length(srcFiles)
filename = strcat(Dir,'\',srcFiles(i).name);
I = imread(filename);% filter image
B(:,ptr) = imcolourhist(I, num_red_bins, num_green_bins, num_blue_bins);
ptr=ptr+1;
end
%normal histogram intersection
a = size(A,2); b = size(B,2);
K = zeros(a, b);
for i = 1:a
Va = repmat(A(:,i),1,b);
K(i,:) = 0.5*sum(Va + B - abs(Va - B));
end
sims=K;
for i=1: 100 % number of relevant images for dir 1
relevant_IDs(i) = i;
end
num_relevant_images = numel(relevant_IDs);
[sorted_sims, locs] = sort(sims, 'descend');
locations_final = arrayfun(@(x) find(locs == x, 1), relevant_IDs);
locations_sorted = sort(locations_final);
precision = (1:num_relevant_images) ./ locations_sorted;
recall = (1:num_relevant_images) / num_relevant_images;
% generate Avg precision
avgprec=sum(precision)/num_relevant_images;% avg precision formula
plot(avgprec, 'b.-');
xlabel('Category ID');
ylabel('Average Precision');
title('Average Precision Plot');
axis([0 10 0 1.05]);
end