Building upon user1415946's comment, you can assume each point represents a bi-variate normal distribution with the covariance matrices given by [[e_x[i]**2,0][0,e_y[i]**2]]
. However, the resulting distribution is not a normal distribution - you'll see, after running the example, how the histogram doesn't resemble a Gaussian at all, but instead a group of them.
To create a histogram out of this set of distributions, one way I see is by generating random samples out of each point using numpy.random.multivariate_normal. See the example code below with some artificial data.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
# This is a function I like to use for plotting histograms
def plotHistogram3d(hist, xedges, yedges):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
hist = hist.transpose()
# Transposing is done so that bar3d x and y match hist shape correctly
dx = np.mean(np.diff(xedges))
dy = np.mean(np.diff(yedges))
# Computing the number of elements
elements = (len(xedges) - 1) * (len(yedges) - 1)
# Generating mesh grids.
xpos, ypos = np.meshgrid(xedges[:-1]+dx/2.0, yedges[:-1]+dy/2.0)
# Vectorizing matrices
xpos = xpos.flatten()
ypos = ypos.flatten()
zpos = np.zeros(elements)
dx = dx * np.ones_like(zpos) * 0.5 # 0.5 factor to give room between bars.
# Use 1.0 if you want all bars 'glued' to each other
dy = dy * np.ones_like(zpos) * 0.5
dz = hist.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('Count')
return
"""
INPUT DATA
"""
# x y ex ey w
data = np.array([[1, 2, 1, 1, 1],
[3, 0, 1, 1, 2],
[0, 1, 2, 1, 5],
[7, 7, 1, 3, 1]])
"""
Generate samples
"""
# Sample size (100 samples will be generated for each data point)
SAMPLE_SIZE = 100
# I want to fill in a table with columns [x, y, w]. Each data point generates SAMPLE_SIZE
# samples, so we have SAMPLE_SIZE * (number of data points) generated points
points = np.zeros((SAMPLE_SIZE * data.shape[0], 3)) # Initializing this matrix
for i, element in enumerate(data): # For each row in the data set
meanVector = element[:2]
covarianceMatrix = np.diag(element[2:4]**2) # Diagonal matrix with elements equal to error^2
# For columns 0 and 1, add generated x and y samples
points[SAMPLE_SIZE*i:SAMPLE_SIZE*(i+1), :2] = \
np.random.multivariate_normal(meanVector, covarianceMatrix, SAMPLE_SIZE)
# For column 2, simply copy original weight
points[SAMPLE_SIZE*i:SAMPLE_SIZE*(i+1), 2] = element[4] # weights
hist, xedges, yedges = np.histogram2d(points[:, 0], points[:, 1], weights=points[:, 2])
plotHistogram3d(hist, xedges, yedges)
plt.show()
Results plotted below: