3

我想做一个 CFA(效果很好),然后我删除了 R² 最低的两个项目,以提高模型的拟合度。问题是它只是为他们中的一个人解决了——当然合身比以前更好了。但是当我试图删除第二项(除了第一项)时,出现了上面提到的警告。第一个删除的项目是“External7”,第二个是“Negative2”。有什么想法或支持吗?

install.packages("sem")
library(sem)
cov.matrix<-cov(na.omit(verbesserungfit))
View(cov.matrix)

cfa.model11 <- specifyModel() #definition welche items zu welchen latenten variablen gehören #und benennung der pfade von latenter variable zu item
EXTERNAL -> External1, external1
EXTERNAL -> External2, external2
EXTERNAL -> External3, external3
EXTERNAL -> External4, external4
EXTERNAL -> External5, external5
EXTERNAL -> External6, external6
Here, I deleted the row EXTERNAL -> External7, external7
SELF -> Self1, self1
SELF -> Self2, self2
SELF -> Self3, self3
SELF -> Self4, self4
POSITIVE -> Positive1, positive1
POSITIVE -> Positive2, positive2
POSITIVE -> Positive3, positive3
POSITIVE -> Positive4, positive4
NEGATIVE -> Negative1, negative1
Here, i deleted the row NEGATIVE -> Negative2, negative2
NEGATIVE -> Negative3, negative3
NEGATIVE -> Negative4, negative4
PROMOTION -> Promotion1, promotion1
PROMOTION -> Promotion2, promotion2
PROMOTION -> Promotion3, promotion3
PROMOTION -> Promotion4, promotion4
PROMOTION -> Promotion5, promotion5
GENERAL -> General1, general1
GENERAL -> General2, general2
GENERAL -> General3, general3
GENERAL -> General4, general4
GENERAL -> General5, general5
CAREER -> Career1, career1
CAREER -> Career2, career2
CAREER -> Career3, career3
CAREER -> Career4, career4
CAREER -> Career5, career5
FINANCIAL -> Financial1, financial1
FINANCIAL -> Financial2, financial2
FINANCIAL -> Financial3, financial3
FINANCIAL -> Financial4, financial4
FINANCIAL -> Financial5, financial5
ENTERTAINMENT -> Entertainment1, entertainment1
ENTERTAINMENT -> Entertainment2, entertainment2
ENTERTAINMENT -> Entertainment3, entertainment3
ENTERTAINMENT -> Entertainment4, entertainment4
ENTERTAINMENT -> Entertainment5, entertainment5
EXTERNAL<->EXTERNAL,NA,1 #Varianz der latenten Variablen definieren # NA und 1 für idendification des modells (standardisierte Variablen) # fixierung der varianzen #varExternal
SELF<->SELF, NA, 1 #varSelf
POSITIVE<->POSITIVE, NA, 1 #varPositive
NEGATIVE<->NEGATIVE, NA, 1 #varNegative
PROMOTION<->PROMOTION, NA, 1 #varPromotion
GENERAL<->GENERAL, NA, 1 #varGeneral
CAREER<->CAREER, NA, 1 #varCarrer
FINANCIAL<->FINANCIAL, NA, 1 #varFinancial
ENTERTAINMENT<->ENTERTAINMENT, NA, 1 #varEnterntainment
External1<->External1, error01 #hinzufuegen von stoerterm zu items, unerklärter teil pro item
External2<->External2, error02
External3<->External3, error03
External4<->External4, error04
External5<->External5, error05
External6<->External6, error06
Here, i deleted the row External7<->External7, error07
Self1<->Self1, error08
Self2<->Self2, error09
Self3<->Self3, error10
Self4<->Self4, error11
Positive1<->Positive1, error12
Positive2<->Positive2, error13
Positive3<->Positive3, error14
Positive4<->Positive4, error15
Negative1<->Negative1, error16
Here, i deleted the row Negative2<->Negative2, error17
Negative3<->Negative3, error18
Negative4<->Negative4, error19
Promotion1<->Promotion1, error20
Promotion2<->Promotion2, error21
Promotion3<->Promotion3, error22
Promotion4<->Promotion4, error23
Promotion5<->Promotion5, error24
General1<->General1, error25
General2<->General2, error26
General3<->General3, error27
General4<->General4, error28
General5<->General5, error29
Career1<->Career1, error30
Career2<->Career2, error31
Career3<->Career3, error32
Career4<->Career4, error33
Career5<->Career5, error34
Financial1<->Financial1, error35
Financial2<->Financial2, error36
Financial3<->Financial3, error37
Financial4<->Financial4, error38
Financial5<->Financial5, error39
Entertainment1<->Entertainment1, error40
Entertainment2<->Entertainment2, error41
Entertainment3<->Entertainment3, error42
Entertainment4<->Entertainment4, error43
Entertainment5<->Entertainment5, error44
EXTERNAL<->SELF, cov12 #covarianz zwischen den latenten variablen
EXTERNAL<->POSITIVE, cov13
EXTERNAL<->NEGATIVE, cov14
EXTERNAL<->PROMOTION, cov15
EXTERNAL<->GENERAL, cov16
EXTERNAL<->CAREER, cov17
EXTERNAL<->FINANCIAL, cov18
EXTERNAL<->ENTERTAINMENT, cov19
SELF<->POSITIVE, cov23
SELF<->NEGATIVE, cov24
SELF<->PROMOTION, cov25
SELF<->GENERAL, cov26
SELF<->CAREER, cov27
SELF<->FINANCIAL, cov28
SELF<->ENTERTAINMENT, cov29
POSITIVE<->NEGATIVE, cov34
POSITIVE<->PROMOTION, cov35
POSITIVE<->GENERAL, cov36
POSITIVE<->CAREER, cov37
POSITIVE<->FINANCIAL, cov38
POSITIVE<->ENTERTAINMENT, cov39
NEGATIVE<->PROMOTION, cov45
NEGATIVE<->GENERAL, cov46
NEGATIVE<->CAREER, cov47
NEGATIVE<->FINANCIAL, cov48
NEGATIVE<->ENTERTAINMENT, cov49
PROMOTION<->GENERAL, cov56
PROMOTION<->CAREER, cov57
PROMOTION<->FINANCIAL, cov58
PROMOTION<->ENTERTAINMENT, cov59
GENERAL<->CAREER, cov67
GENERAL<->FINANCIAL, cov68
GENERAL<->ENTERTAINMENT, cov69
CAREER<->FINANCIAL, cov78
CAREER<->ENTERTAINMENT, cov79
FINANCIAL<->ENTERTAINMENT, cov89

cfa11 <- sem( cfa.model11, cov.matrix, nrow(verbesserungfit)) # was muss alles an cfa gesendet werden #modellname #name für covarianzmatrix #wie viele participants in dataset mit n row function
summary(cfa11,fit.indices=c("GFI", "AGFI", "RMSEA", "NFI", "NNFI", "CFI", "RNI", "IFI", "SRMR", "AIC", "AICc", "BIC", "CAIC"))

谢谢你的支持!

4

1 回答 1

0

警告意味着模型无法收敛,即在您指定的参数的估计过程中找不到解决方案。

这里可能有两个问题在起作用。my.mod <- cfa()首先,我发现在检查大型测量模型时更容易使用。查看 sem 包帮助页面了解更多信息。您更新模型的方式与specifyModel

其次,如果您发布每个模型的模型对象会更有帮助,您可能会删除不需要的方差或协方差,或者忘记删除。

最后,如果您能提供样本量,将会很有帮助。

于 2015-06-16T21:14:29.253 回答