谢谢西蒙扎克!
我已经使用您的建议重写了算法,并且速度更快!
重新设计的codepen:http ://codepen.io/anon/pen/Btdyj
现在,相同的示例运行时间约为 15 毫秒!
function pointsToPolygon(points, triangles, maxEdgeLength){
console.time('homebrewed mergization');
var dist = function(a, b){
if(typeof a === "number"){
a = points[a];
};
if(typeof b === "number"){
b = points[b];
};
return Math.sqrt(Math.pow(a[0] - b[0], 2) +
Math.pow(a[1] - b[1], 2));
};
if(!points.length){
return undefined;
};
var pointFreq = [];
points.forEach(function(v){
pointFreq.push(0);
});
for(var i = triangles.length; i; i-=3){
if(dist(triangles[i-1], triangles[i-2]) < maxEdgeLength &&
dist(triangles[i-3], triangles[i-2]) < maxEdgeLength &&
dist(triangles[i-1], triangles[i-3]) < maxEdgeLength){
pointFreq[triangles[i-1]]++;
pointFreq[triangles[i-2]]++;
pointFreq[triangles[i-3]]++;
};
};
// Keep points that are used in 3 or fewer triangles
var output =[];
pointFreq.forEach(function(freq, i){
if(freq<4){
output.push(points[i]);
};
});
// Sort points by looping around by each next closest point
var sorted = [];
while(output.length>0){
sorted.push(output.pop());
output=output.sort(function(a,b){
var distA =dist(sorted[sorted.length-1], a),
distB =dist(sorted[sorted.length-1], b);
if(distA < distB){
return 1;
}else if(distA === distB){
return 0;
};
return -1;
});
};
sorted=simplifyPath(sorted,0.1);
console.timeEnd('homebrewed mergization');
return sorted;
};
我可以通过过滤在 3 个或更少的三角形中使用的点来找到边界,然后通过从任意点的每个下一个最近点循环来对点进行排序。
由于 Douglas-Peucker 简化算法(改编自https://gist.github.com/adammiller/826148),可能不是 100% 准确,但对我来说似乎已经足够了。