4

我正在使用 pdist 命令来查找存储在矩阵中的 x 和 y 坐标之间的距离。

X = [100 100;
      0  100;
     100  0;
     500 400;
     300 600;];

D = pdist(X,'euclidean')

它返回一个 15 元素向量。:

[0.734979755525412 3.40039811339820 2.93175207511321   1.83879677592575 2.40127440268306 2.75251513299386 2.21488402640753 1.10610649500317 1.81674017301699 0.903207751535635 1.99116952754924 1.05069952386082 1.24122819418333 1.08583377275532 1.38729428638035]

有没有办法将这些距离与它们派生的坐标相关联,即将它们存储在具有一般行形式的矩阵中:

[Length xcoordinate1 ycoordinate1 xcoordinate2 ycoordinate2]

找到的每个长度在哪里有一行?

提前致谢

4

3 回答 3

12

MATLAB 有一个名为“squareform”的内置命令,可将 pdist 输出转换为 nxn 距离矩阵http://www.kxcad.net/cae_MATLAB/toolbox/stats/pdist.html

%# define X, D
X = [100 100;
      0  100;
      100  0;
     500 400;
     300 600;];

D = squareform(pdist(X,'euclidean'));
于 2011-05-06T15:21:00.080 回答
7
%# define X, D
X = [100 100;
      0  100;
     100  0;
     500 400;
     300 600;];

D = pdist(X,'euclidean');

%# find the indices corresponding to each distance
tmp = ones(size(X,1));
tmp = tril(tmp,-1); %# creates a matrix that has 1's below the diagonal

%# get the indices of the 1's
[rowIdx,colIdx ] = find(tmp);

%# create the output
out = [D',X(rowIdx,:),X(colIdx,:)];
于 2010-03-19T13:39:22.290 回答
1

您可以使用函数NCHOOSEK生成一组索引X并按以下方式构建矩阵:

>> X = [100 100; 0 100; 100 0; 500 400; 300 600];  %# Your sample data
>> D = pdist(X,'euclidean')'  %'# Euclidean distance, with result transposed

D =

  100.0000    %# Note that I get different results than your example!
  100.0000
  500.0000
  538.5165
  141.4214
  583.0952
  583.0952
  565.6854
  632.4555
  282.8427

>> index = nchoosek(1:size(X,1),2);
>> M = [D X(index(:,1),:) X(index(:,2),:)]    %# [Distance X1 Y1 X2 Y2]

M =

  100.0000  100.0000  100.0000         0  100.0000
  100.0000  100.0000  100.0000  100.0000         0
  500.0000  100.0000  100.0000  500.0000  400.0000
  538.5165  100.0000  100.0000  300.0000  600.0000
  141.4214         0  100.0000  100.0000         0
  583.0952         0  100.0000  500.0000  400.0000
  583.0952         0  100.0000  300.0000  600.0000
  565.6854  100.0000         0  500.0000  400.0000
  632.4555  100.0000         0  300.0000  600.0000
  282.8427  500.0000  400.0000  300.0000  600.0000

请注意,仅当列数少于 15时,函数NCHOOSEK才是实用的解决方案。X

编辑:由于pdist选择点对,所以 seconds 参数nchoosek应该只是2. 它与数据的维度无关。这也使前一行的注释过时了。(很抱歉以这种方式进行编辑,没有足够的代表添加评论,但我真的很喜欢这个答案并想修复它)——保罗

于 2010-03-19T15:47:26.390 回答