这是另一种方法:
z <- sequence(rows)
cbind(
row = unlist(lapply(2:rows, function(x) x:rows), use.names = FALSE),
col = rep(z[-length(z)], times = rev(tail(z, -1))-1))
具有更大数据的基准:
library(microbenchmark)
rows <- 1000
m <- matrix(, rows, rows)
## Your current approach
fun1 <- function() which(lower.tri(m) == TRUE, arr.ind=TRUE)
## An improvement of your current approach
fun2 <- function() which(lower.tri(m), arr.ind = TRUE)
## The approach shared in this answer
fun3 <- function() {
z <- sequence(rows)
cbind(
row = unlist(lapply(2:rows, function(x) x:rows), use.names = FALSE),
col = rep(z[-length(z)], times = rev(tail(z, -1))-1))
}
## Sven's answer
fun4 <- function() {
row <- rev(abs(sequence(seq.int(rows - 1)) - rows) + 1)
col <- rep.int(seq.int(rows - 1), rev(seq.int(rows - 1)))
cbind(row, col)
}
microbenchmark(fun1(), fun2(), fun3(), fun4())
# Unit: milliseconds
# expr min lq median uq max neval
# fun1() 77.813577 85.343356 90.60689 95.71648 130.40059 100
# fun2() 73.812204 82.103600 85.87555 90.59235 138.66547 100
# fun3() 9.016237 9.382506 10.63291 13.20085 55.42137 100
# fun4() 20.591863 24.999702 28.82232 31.90663 65.05169 100