我一直在读这本关于等轴测图的好书。他们展示了在 3d 空间中计算图块。甚至还可以在 3d 空间中计算鼠标。这是代码。它很多,但我希望其他人比我更了解它。这本书是由 jobe makar 写的关于构建多人游戏世界的。我想分享它,因为就放入其中的代码量而言,它的代码非常简单。只需要 2 节课。我对三角学不太擅长。所以我无法真正解释数学是如何得出结果的。希望有人可以为我解释一下:D。
没有给出 Y 坐标,因为宽度 = 高度。坐标方法只是一个自定义的点类,它包含 x、y 和 z。
package com.gamebook.grid {
import com.gamebook.utils.geom.Coordinate;
import com.gamebook.utils.Isometric;
import flash.display.MovieClip;
import flash.events.MouseEvent;
/**
* ...
* @author Jobe Makar - jobe@electrotank.com
*/
public class Map extends MovieClip{
private var _grid:Array;
private var _iso:Isometric;
private var _tileWidthOnScreen:int;
private var _tileHeightOnScreen:int;
private var _tileWidth:Number;
private var _tileHeight:Number;
private var _cols:int;
private var _rows:int;
private var _lastTile:Tile;
public function Map() {
initialize();
}
private function initialize():void{
_iso = new Isometric();
//when mapped to the screen the tile makes a diamond of these dimensions
_tileWidthOnScreen = 64;
_tileHeightOnScreen = 32;
//figure out the width of the tile in 3D space
_tileWidth = _iso.mapToIsoWorld(64, 0).x;
//the tile is a square in 3D space so the height matches the width
_tileHeight = _tileWidth;
buildGrid();
addEventListener(MouseEvent.MOUSE_MOVE, mouseMoved);
}
private function mouseMoved(e:MouseEvent):void {
if (_lastTile != null) {
_lastTile.alpha = 1;
_lastTile = null;
}
var coord:Coordinate = _iso.mapToIsoWorld(mouseX, mouseY);
var col:int = Math.floor(coord.x / _tileWidth);
var row:int = Math.floor(Math.abs(coord.z / _tileHeight));
if (col < _cols && row < _rows) {
var tile:Tile = getTile(col, row);
tile.alpha = .5;
_lastTile = tile;
}
}
private function buildGrid():void{
_grid = [];
_cols = 10;
_rows = 10;
for (var i:int = 0; i < _cols;++i) {
_grid[i] = [];
for (var j:int = 0; j < _rows;++j) {
var t:Tile = new Tile();
var tx:Number = i * _tileWidth;
var tz:Number = -j * _tileHeight;
var coord:Coordinate = _iso.mapToScreen(tx, 0, tz);
t.x = coord.x;
t.y = coord.y;
_grid[i][j] = t;
addChild(t);
}
}
}
private function getTile(col:int, row:int):Tile {
return _grid[col][row];
}
}
}
然后我们有计算 3d 空间的等距类。
包 com.gamebook.utils { 导入 com.gamebook.utils.geom.Coordinate;
/**
* @author Jobe Makar - jobe@electrotank.com
*/
public class Isometric {
//trigonometric values stored for later use
private var _sinTheta:Number;
private var _cosTheta:Number;
private var _sinAlpha:Number;
private var _cosAlpha:Number;
/**
* Isometric class contrustor.
* @param declination value. Defaults to the most common value, which is 30.
*/
public function Isometric() {
var theta:Number = 30;//even though the tiles are already isometric, you still have to put the degrees the tiles will be turned.
var alpha:Number = 45;//45 degrees on y axis, 30 dgrees on x axis
theta *= Math.PI/180; // then you translate to radians
alpha *= Math.PI/180;
_sinTheta = Math.sin(theta);
_cosTheta = Math.cos(theta);
_sinAlpha = Math.sin(alpha);
_cosAlpha = Math.cos(alpha);
}
/**
* Maps 3D coordinates to the 2D screen
* @param x coordinate
* @param y coordinate
* @param z coordinate
* @return Coordinate instance containig screen x and screen y
*/
public function mapToScreen(xpp:Number, ypp:Number, zpp:Number):Coordinate {
var yp:Number = ypp;
var xp:Number = xpp*_cosAlpha+zpp*_sinAlpha;
var zp:Number = zpp*_cosAlpha-xpp*_sinAlpha;
var x:Number = xp;
var y:Number = yp*_cosTheta-zp*_sinTheta;
return new Coordinate(x, y, 0);
}
/**
* Maps 2D screen coordinates into 3D coordinates. It is assumed that the target 3D y coordinate is 0.
* @param screen x coordinate
* @param screen y coordinate
* @return Coordinate instance containig 3D x, y, and z
*/
public function mapToIsoWorld(screenX:Number, screenY:Number):Coordinate {
var z:Number = (screenX/_cosAlpha-screenY/(_sinAlpha*_sinTheta))*(1/(_cosAlpha/_sinAlpha+_sinAlpha/_cosAlpha));
var x:Number = (1/_cosAlpha)*(screenX-z*_sinAlpha);
return new Coordinate(x, 0, z);
}
}
}