我已经用 Python 实现了它。这很容易理解,因为贝叶斯定理的所有公式都在单独的函数中:
#Bayes Theorem
def get_outcomes(sample_space, f_name='', e_name=''):
outcomes = 0
for e_k, e_v in sample_space.items():
if f_name=='' or f_name==e_k:
for se_k, se_v in e_v.items():
if e_name!='' and se_k == e_name:
outcomes+=se_v
elif e_name=='':
outcomes+=se_v
return outcomes
def p(sample_space, f_name):
return get_outcomes(sample_space, f_name) / get_outcomes(sample_space, '', '')
def p_inters(sample_space, f_name, e_name):
return get_outcomes(sample_space, f_name, e_name) / get_outcomes(sample_space, '', '')
def p_conditional(sample_space, f_name, e_name):
return p_inters(sample_space, f_name, e_name) / p(sample_space, f_name)
def bayes(sample_space, f, given_e):
sum = 0;
for e_k, e_v in sample_space.items():
sum+=p(sample_space, e_k) * p_conditional(sample_space, e_k, given_e)
return p(sample_space, f) * p_conditional(sample_space, f, given_e) / sum
sample_space = {'UK':{'Boy':10, 'Girl':20},
'FR':{'Boy':10, 'Girl':10},
'CA':{'Boy':10, 'Girl':30}}
print('Probability of being from FR:', p(sample_space, 'FR'))
print('Probability to be French Boy:', p_inters(sample_space, 'FR', 'Boy'))
print('Probability of being a Boy given a person is from FR:', p_conditional(sample_space, 'FR', 'Boy'))
print('Probability to be from France given person is Boy:', bayes(sample_space, 'FR', 'Boy'))
sample_space = {'Grow' :{'Up':160, 'Down':40},
'Slows':{'Up':30, 'Down':70}}
print('Probability economy is growing when stock is Up:', bayes(sample_space, 'Grow', 'Up'))