我正在使用:Ubuntu 12.04 64 位、R 3.0.2、RStudio 0.98.312、knitr 1.5、markdown 0.6.3、mgcv1.7-27
我有一个包含多个代码块的 Rmarkdown 文档。在一个块的中间有一些代码,我适合 GAM,总结适合度并绘制适合度。问题是第一个图渲染到输出文件中,但第二个图没有。这是来自该块的经过清理的代码片段:
fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit) # look at non-missing only
plot(fit)
fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit)
mean(y[is.na(x)]) - mean(y[!is.na(x)])
一切都按预期呈现,除了输出直接从回显第二个绘图语句到回显下面的均值计算。均值计算的结果正确呈现。
如果我稍后在块中注释掉另一个绘图调用 7 行,则丢失的绘图将正确呈现。
有人对这里发生的事情有任何建议吗?
下面更新
总结 - 在调用 Plot 2 之后的几行,有一些 R 代码会生成执行错误(未找到变量),之后几行调用 Plot 3。如果代码错误得到修复,则渲染 Plot 2。如果代码错误未修复并且对 Plot 3 的调用被注释掉,则渲染 Plot 2。问题取决于用于存储不同拟合结果的相同变量“拟合”。如果我将每个拟合分配给不同的变量 Plot 2 呈现 OK。
我不明白在成功执行多行代码后所做的更改如何(显然是回顾性地)阻止 Plot 2 呈现。
可重现的例子:
Some text.
```{r setup}
require(mgcv)
mkdata <- function(n=100) {
x <- rnorm(n) + 5
y <- x + 0.3 * rnorm(n)
x[sample(ceiling(n/2), ceiling(n/10))] <- NA
x <- x^2
data.frame(x, y)
}
```
Example 1
=========
Plot 2 fails to render. (Using the same fit object for each fit.)
```{r example_1}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)
fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1
fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2
mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation
# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()
attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0) # doesn't run because of error in recode
summary(fit) # this is actually fit 2
plot(fit) # plot 3 (this is actually fit 2)
detach()
```
Example 2
=========
Use separate fit objects for each fit. Plot 2 renders OK.
```{r example_2}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)
fit1 <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit1)
plot(fit1) # plot 1
fit2 <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit2)
plot(fit2) #plot 2
mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation
# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()
attach(j0)
fit3 <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0) # doesn't run because of error in recode
summary(fit3)
plot(fit3) # plot 3
detach()
```
Example 3
=========
Revert to using the same fit object for each fit. Plot 2 renders because plot 3 is commented out.
```{r example_3}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)
fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1
fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2
mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation
# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(x.na, mx, x) # ERROR in recode
detach()
attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0)
summary(fit) # this is actually fit 2
# plot(fit) # plot 3 (this is actually fit 2)
detach()
```
Example 4
=========
Plot 2 renders because later recode error is fixed.
```{r example_4}
j0 <- mkdata()
attach(j0)
mx <- min(x, na.rm=TRUE)
fit <- gam(y ~ s(x), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) # plot 1
fit <- gam(y ~ s(sqrt(x)), data=j0, subset= !is.na(x))
summary(fit)
plot(fit) #plot 2
mean(y[is.na(x)]) - mean(y[!is.na(x)]) # means calculation
# recode the missing values
j0$x.na <- is.na(x)
j0$x.c <- ifelse(j0$x.na, mx, x) # error in recode fixed
detach()
attach(j0)
fit <- gam(y ~ s(sqrt(x.c)) + x.na, data=j0)
summary(fit)
plot(fit) # plot 3
detach()
```
日志文件:
> require(knitr); knit('reproduce.Rmd', encoding='UTF-8');
Loading required package: knitr
processing file: reproduce.Rmd
|...... | 9%
ordinary text without R code
|............ | 18%
label: setup
|.................. | 27%
ordinary text without R code
|........................ | 36%
label: example_1
|.............................. | 45%
ordinary text without R code
|................................... | 55%
label: example_2
|......................................... | 64%
ordinary text without R code
|............................................... | 73%
label: example_3
|..................................................... | 82%
ordinary text without R code
|........................................................... | 91%
label: example_4
|.................................................................| 100%
ordinary text without R code
output file: reproduce.md
[1] "reproduce.md"