我的应用程序创建了 Mandelbrot 分形的图像。它通过计算数据行,将它们转换为一行颜色,然后将此行复制到位图来实现。首先,这是以串行方式完成的,效果很好。现在我正在尝试使用多个线程来做到这一点。每个线程计算自己的一系列行,例如线程 0 计算 0、4、8、12、...;线程 1: 1, 5, 9, ...; 线程 2: 2, 6, 10, ...,线程 3: 3, 7,...,在给出的示例中使用了 4 个线程 (FMax_Threads = 4)。临界区(声明为全局)必须防止多个线程同时写入位图。另一个全局变量(Finished_Tasks)用于跟踪写入的行数。一旦等于行数,计算就完成了。
相同的代码在 Windows 下运行良好,但在 Android 下会导致位图乱码。我之前注意到Windows 比 Android 更能容忍错误。有人知道我到底做错了什么吗?
下面的单位计算螺纹 mandelbrot
unit Parallel_Mandelbrot;
interface
uses System.SysUtils, System.Types, System.UITypes, System.Classes,
System.Variants, System.SyncObjs, System.Diagnostics, FMX.Types, FMX.Graphics;
// Color_Type_Defs;
const cZoom_Factor = 3.0;
cMax_Stack = 100;
type
TPrecision = double;
Trec_xy = record
xl: TPrecision;
yl: TPrecision;
xu: TPrecision;
yu: TPrecision;
end; // Record: Trec_xy //
TStack_xy = array [0..cMax_Stack + 1] of Trec_xy;
TCompute = class;
TParallelMandelbrot = class (TObject)
private
FBitmap: TBitmap;
FXSteps: Int32;
FYSteps: Int32;
FMax_Iter: Int32;
FMax_Threads: Int32;
FColor_Pattern: Int32;
FStop: boolean;
FStack: TStack_xy;
FCurrent_Stack: Int32;
function get_threads: Int32;
procedure set_threads (value: Int32);
function get_iterations: Int32;
procedure set_iterations (value: Int32);
public
constructor Create (Bitmap: TBitmap; xsteps, ysteps, max_iter, cp: uInt32);
destructor Destroy; override;
procedure zoom (xc, yc: Int32);
procedure unzoom;
procedure reset;
function compute (iterations: Int32): Int64;
property Max_Threads: Int32 read get_threads write set_threads;
property Iterations: Int32 read get_iterations write set_iterations;
property Color_Pattern: Int32 read FColor_Pattern write FColor_Pattern;
property Stop: boolean read FStop write FStop;
end; // Class: ParallelMandelbrot //
TCompute = class (TThread)
protected
FBitmap: TBitmap;
Fxl: TPrecision;
Fyl: TPrecision;
Fxu: TPrecision;
Fyu: TPrecision;
FXSteps: Int32;
FYSteps: Int32;
FOffset: Int32;
FIncr: Int32;
FMax_Iter: uInt32;
FColor_Pattern: Int32;
public
constructor Create (Bitmap: TBitmap; xl, yl, xu, yu: TPrecision; xsteps, ysteps, offset, incr, max_iter, cp: uInt32);
destructor Destroy; override;
procedure Execute; override;
procedure Work;
end;// TComputer //
implementation
var cs: TCriticalSection;
Tasks_Finished: Int32;
{*******************************************************************
* *
* Class: ParallelMandelbrot *
* *
********************************************************************}
constructor TParallelMandelbrot.Create (Bitmap: TBitmap; xsteps, ysteps, max_iter, cp: uInt32);
begin
inherited Create;
FBitmap := Bitmap;
FCurrent_Stack := 0;
FStack [FCurrent_Stack].xl := -2.0;
FStack [FCurrent_Stack].yl := -1.5;
FStack [FCurrent_Stack].xu := +1.0;
FStack [FCurrent_Stack].yu := +1.5;
FXSteps := xsteps;
FYSteps := ysteps;
FMax_Iter := max_iter;
FColor_Pattern := cp;
FMax_Threads := 1;
// Create a global critical section
cs := TCriticalSection.Create;
end; // Create //
destructor TParallelMandelbrot.Destroy;
begin
cs.Free;
inherited Destroy;
end; // Destroy //
function TParallelMandelbrot.get_threads: Int32;
begin
get_threads := FMax_Threads;
end; // get_threads //
procedure TParallelMandelbrot.set_threads (value: Int32);
begin
FMax_Threads := value;
end; // set_threads //
function TParallelMandelbrot.get_iterations: Int32;
begin
get_iterations := FMax_Iter;
end; // set_iterations //
procedure TParallelMandelbrot.set_iterations (value: Int32);
begin
FMax_Iter := value;
end; // set_iterations //
procedure TParallelMandelbrot.zoom (xc, yc: Int32);
// Zooms factor zoom_factor into the fractal
var rect: TRectF;
xfraction, yfraction: TPrecision;
xcenter, ycenter: TPrecision;
xrange, yrange: TPrecision;
xzoom, yzoom: TPrecision;
offset: TPrecision;
begin
if FCurrent_Stack < cMax_Stack - 1 then
begin
xrange := FStack [FCurrent_Stack].xu - FStack [FCurrent_Stack].xl;
yrange := FStack [FCurrent_Stack].yu - FStack [FCurrent_Stack].yl;
xfraction := xc / FXsteps;
yfraction := yc / FYsteps;
xcenter := FStack [FCurrent_Stack].xl + xfraction * (xrange);
ycenter := FStack [FCurrent_Stack].yl + yfraction * (yrange);
xzoom := xrange / cZoom_Factor;
yzoom := yrange / cZoom_Factor;
FCurrent_Stack := FCurrent_Stack + 1;
FStack [FCurrent_Stack].xl := xcenter - xzoom / 2;
FStack [FCurrent_Stack].xu := xcenter + xzoom / 2;
FStack [FCurrent_Stack].yl := ycenter - yzoom / 2;
FStack [FCurrent_Stack].yu := ycenter + yzoom / 2;
// Draw a dotted rectangle to indicate the area on the bitmap that is zoomed into
FBitmap.Canvas.BeginScene;
try
// Create a rectangle with (Left, Top, Right, Bottom)
offset := 2 * cZoom_Factor;
rect := TRectf.Create(xc - FXSteps / offset, yc - FYSteps / offset,
xc + FXSteps / offset, yc + FYSteps / offset);
FBitmap.Canvas.Stroke.Color := TAlphaColors.Black;
FBitmap.Canvas.StrokeDash := TStrokeDash.sdDot;
FBitmap.Canvas.DrawRect(rect, 0, 0, AllCorners, 50);
finally
FBitmap.Canvas.EndScene;
end; // try..finally
end; // if
end; // mandel_zoom //
procedure TParallelMandelbrot.unzoom;
begin
if FCurrent_Stack > 0 then
begin
FCurrent_Stack := FCurrent_Stack - 1;
end; // if
end; // mandel_unzoom //
procedure TParallelMandelbrot.reset;
begin
FCurrent_Stack := 0;
end; // reset //
function TParallelMandelbrot.compute (iterations: Int32): Int64;
var Timer: TStopWatch;
threads: array of TCompute;
thread: Int32;
xs, ys: Int32;
xl, yl, xu, yu: TPrecision;
begin
xl := FStack [FCurrent_Stack].xl;
yl := FStack [FCurrent_Stack].yl;
xu := FStack [FCurrent_Stack].xu;
yu := FStack [FCurrent_Stack].yu;
xs := FXSteps;
ys := FYSteps;
SetLength (threads, FMax_Threads);
Tasks_Finished := 0; // No tasks finished yet
Timer.Create;
Timer.Reset;
Timer.Start;
FBitmap.SetSize (FXSteps, FYSteps);
FBitmap.Canvas.BeginScene; // Tell the canvas we start drawing
try
// The threads are created suspended, so they have to be started explicitly
for thread := 0 to Max_Threads - 1
do threads [thread] := TCompute.Create (FBitmap, xl, yl, xu, yu, xs, ys, thread, Max_Threads, Iterations, Color_Pattern);
for thread := 0 to Max_Threads - 1
do threads [thread].Start;
// Wait until all threads are ready. Each thread increments Tasks_Finished
// when one row is computed
while Tasks_Finished < FYSteps do
begin
Sleep (50);
end; // while
finally
Timer.Stop;
Result := Timer.ElapsedMilliseconds;
cs.Acquire; // Be absolutely sure all threads left the cirtical section
try
FBitmap.Canvas.EndScene; // and tell the canvas we're ready
finally
cs.Leave;
end; // try..finally
end; // try..finally
end; // compute //
{*******************************************************************
* *
* Class: TCompute *
* *
********************************************************************}
constructor TCompute.Create (Bitmap: TBitmap; xl, yl, xu, yu: TPrecision; xsteps, ysteps, offset, incr, max_iter, cp: uInt32);
begin
inherited Create (True); // Create suspended
FBitmap := Bitmap;
Fxl := xl;
Fyl := yl;
Fxu := xu;
Fyu := yu;
FXSteps := xsteps;
FYSteps := ysteps;
FOffset := offset;
FIncr := incr;
FMax_Iter := max_iter;
FColor_Pattern := cp;
end; // Create //
destructor TCompute.Destroy;
begin
inherited Destroy;
end; // Destroy //
procedure TCompute.Execute;
begin
try
Work;
except
// A thread should never crash in Execute, just ignore the exception
end;
end; // Execute //
procedure TCompute.Work;
var vBitMapData: TBitmapData;
row_of_colors: array of TAlphaColor;
ix, iy: Int32;
w, h: Int32;
iter: uInt32;
xl, yl, xu, yu: TPrecision;
x, y: TPrecision;
x0, y0: TPrecision;
x2, y2: TPrecision;
x_inc, y_inc: TPrecision;
inv_max_iter: TPrecision;
temp: TPrecision;
begin
// Initialize the bitmap size
h := Round (FBitmap.Height);
w := Round (FBitmap.Width);
FXsteps := w;
FYsteps := h;
inv_max_iter := 1 / FMax_Iter;
SetLength (row_of_colors, FXSteps);
xl := Fxl;
yl := Fyl;
xu := Fxu;
yu := Fyu;
// compute the Mandelbrot image. Iterate row wise, as the bitmap is organized
// row wise (first y, later x). This makes it easier to multi-thread the
// computation in a later stage.
x_inc := (xu - xl) / FXsteps;
y_inc := (yu - yl) / FYsteps;
// For each row (y) starting at FOffset, incremented with FIncr
iy := FOffset;
while iy < FYsteps do
begin
// Compute one column (x)
ix := 0;
while ix < FXsteps do
begin
x0 := xl + ix * x_inc;
y0 := yl + iy * y_inc;
x := 0;
y := 0;
x2 := 0;
y2 := 0;
iter := 0;
while ((x2 + y2) < 4) and (iter < FMax_Iter) do
begin
temp := x2 - y2 + x0;
y := 2 * x * y + y0;
x := temp;
x2 := Sqr (x);
y2 := Sqr (y);
iter := iter + 1;
end; // while
case iter mod 4 of // 4 shades of blue
0: row_of_colors [ix] := $FFFFFFFF;
1: row_of_colors [ix] := $FF4444FF;
2: row_of_colors [ix] := $FF8888FF;
3: row_of_colors [ix] := $FFCCCCFF;
end; // case
// row_of_colors [ix] := create_color (iter * inv_max_iter, FColor_Pattern);
ix := ix + 1;
end; // while
// Copy the computed row to the bitmap. Use the critical section to aquire
// exclusive write rights to the bitmap
cs.Acquire;
try
if FBitmap.Map (TMapAccess.maWrite, vBitMapData) then
try
for ix := 0 to FXSteps - 1
do vBitmapData.SetPixel (ix, iy, row_of_colors [ix]); // set the pixel color at x, y
finally
FBitmap.Unmap (vBitMapData); // unlock the bitmap
end; // if try..finally
Tasks_Finished := Tasks_Finished + 1;
finally
cs.Release;
end; // try..finally
// On to the next row
iy := iy + FIncr;
end; // while
end; // Work //
end. // Unit: Parallel_Mandelbrot //
它被称为如下:
Mandel := TParallelMandelbrot.Create (Image.Bitmap, Round (Image.Width), Round (Image.Height), 255, 0);
Mandel.compute (32);
正如您可能已经猜到的那样,Image 是表单上的 TImage。
任何帮助是极大的赞赏!
更新 1 LU RD 和 David 的言论让我重新考虑算法。结果,我发现 TParallelMandelbrot.compute 函数中缺少 FBitmap.Canvas.EndScene。当我更正该应用程序在 Windows 和 Android 中都可以运行时。
起初,我通过使用 TAlphoColor 矩阵并在所有计算完成后将其复制到位图来消除一个重要的瓶颈。根据迭代次数(64 和 4096),重绘位图的速度可以节省 5/8 到 3 倍。迭代次数越多,计算越多,出现瓶颈的可能性就越小,这在图中很好地反映了这一点。另一个建议是使用 WaitFor。这提供了移除关键部分和瓶颈的可能性。与 Finished_Tasks 的更新一样,剩下的唯一语句我无法在计时结果中找到它。然而,代码得到了极大的改进。
LU RD 提到了 AlphaColorToScanline。由于我在 VCL 的日子里使用 ScanLine 获得了很好的结果,我希望能看到很好的结果。现在不是这样。除了噪音之外,我无法检测到使用扫描线之间的差异。然而更糟糕的是,在 Android 中,红色和蓝色字节被交换了。在 Windows 中,它们可以正确显示。
我发布了下面的代码,以便您自己检查。下面是一些时序结果(Windows = core i7-920 4 cores each cores with hyper thread, 2.67Ghz; Android = ARMv7, 1Ghz, 2(?) cores)
# of timings in seconds
threads windows android
1 5.5 30.0
2 2.9 20.0
4 1.6 19.7
8 1.1 -
请参阅下面的 TParallelMandelbrot 中的计算。在添加的末尾标记 EndScene 语句。Windows 并不在意,但 Android 却很在意。我现在创建了未暂停的线程,我不需要再启动它们了。改进几乎不明显。
function TParallelMandelbrot.compute (iterations: Int32): Int64;
var Timer: TStopWatch;
vBitMapData: TBitmapData;
threads: array of TCompute;
thread: Int32;
xi, yi: Int32;
xs, ys: Int32;
xl, yl, xu, yu: TPrecision;
begin
xl := FStack [FCurrent_Stack].xl;
yl := FStack [FCurrent_Stack].yl;
xu := FStack [FCurrent_Stack].xu;
yu := FStack [FCurrent_Stack].yu;
xs := FXSteps;
ys := FYSteps;
SetLength (threads, FMax_Threads);
Timer.Create;
Timer.Reset;
Timer.Start;
FBitmap.SetSize (FXSteps, FYSteps);
// The threads are created suspended, so they have to be started explicitly
for thread := 0 to Max_Threads - 1
do threads [thread] := TCompute.Create (FColor_Matrix, xl, yl, xu, yu, xs, ys, thread, Max_Threads, Iterations, Color_Pattern);
for thread := 0 to Max_Threads - 1
do threads [thread].WaitFor;
Timer.Stop;
Result := Timer.ElapsedMilliseconds;
FBitmap.Canvas.BeginScene; // Tell the canvas we start drawing
try
if FBitmap.Map (TMapAccess.maWrite, vBitMapData) then
try
for yi := 0 to ys - 1 do
for xi := 0 to xs - 1 do
vBitmapData.SetPixel (xi, yi, FColor_Matrix [yi, xi]); // set the pixel color at x, y
// AlphaColorToScanline (FColor_Matrix [yi], vBitmapData.GetScanline (yi), xs, pfA8R8G8B8);
finally
FBitmap.Unmap (vBitMapData); // unlock the bitmap
end; // if try..finally
finally
FBitmap.Canvas.EndScene;
end; // try..finally
end; // compute //
以及TCompute中的计算功能:
procedure TCompute.Work;
var ix, iy: Int32;
iter: uInt32;
xl, yl, xu, yu: TPrecision;
x, y: TPrecision;
x0, y0: TPrecision;
x2, y2: TPrecision;
x_inc, y_inc: TPrecision;
inv_max_iter: TPrecision;
temp: TPrecision;
begin
// Initialize the bitmap size
inv_max_iter := 1 / FMax_Iter;
xl := Fxl;
yl := Fyl;
xu := Fxu;
yu := Fyu;
// compute the Mandelbrot image. Iterate row wise, as the bitmap is organized
// row wise (first y, later x). This makes it easier to multi-thread the
// computation in a later stage.
x_inc := (xu - xl) / FXsteps;
y_inc := (yu - yl) / FYsteps;
// For each row (y) starting at FOffset, incremented with FIncr
iy := FOffset;
while iy < FYsteps do
begin
// Compute one column (x)
ix := 0;
while ix < FXsteps do
begin
x0 := xl + ix * x_inc;
y0 := yl + iy * y_inc;
x := 0;
y := 0;
x2 := 0;
y2 := 0;
iter := 0;
while ((x2 + y2) < 4) and (iter < FMax_Iter) do
begin
temp := x2 - y2 + x0;
y := 2 * x * y + y0;
x := temp;
x2 := Sqr (x);
y2 := Sqr (y);
iter := iter + 1;
end; // while
FColor_Matrix [iy, ix] := create_color (iter * inv_max_iter, FColor_Pattern);
ix := ix + 1;
end; // while
// On to the next row
iy := iy + FIncr;
end; // while
end; // Work //
更新 2 最后的结论是 TBitmap不是线程安全的。请参阅此链接(它位于 Embarcadero wiki 上的某个位置,但无法重新找到它,这是我找到的唯一参考)。这就解释了为什么使用中间 colot 矩阵是一个好主意!
谢谢大家的建议!