请帮助解释 Weka 库中 weka.classifiers.functions.Logistic 产生的逻辑回归结果。
我使用来自 Weka 示例的数字数据:
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no
要创建逻辑回归模型,我使用命令: java -cp $WEKA_INS/weka.jar weka.classifiers.functions.Logistic -t $WEKA_INS/data/weather.numeric.arff -T $WEKA_INS/data/weather.numeric.arff - d ./weather.numeric.model.arff
这里三个论点的意思是:
-t <name of training file> : Sets training file.
-T <name of test file> : Sets test file.
-d <name of output file> : Sets model output file.
运行上述命令会产生以下输出:
Logistic Regression with ridge parameter of 1.0E-8
Coefficients...
Class
Variable yes
===============================
outlook=sunny -6.4257
outlook=overcast 13.5922
outlook=rainy -5.6562
temperature -0.0776
humidity -0.1556
windy 3.7317
Intercept 22.234
Odds Ratios...
Class
Variable yes
===============================
outlook=sunny 0.0016
outlook=overcast 799848.4264
outlook=rainy 0.0035
temperature 0.9254
humidity 0.8559
windy 41.7508
Time taken to build model: 0.05 seconds
Time taken to test model on training data: 0 seconds
=== Error on training data ===
Correctly Classified Instances 11 78.5714 %
Incorrectly Classified Instances 3 21.4286 %
Kappa statistic 0.5532
Mean absolute error 0.2066
Root mean squared error 0.3273
Relative absolute error 44.4963 %
Root relative squared error 68.2597 %
Total Number of Instances 14
=== Confusion Matrix ===
a b <-- classified as
7 2 | a = yes
1 4 | b = no
问题:
1) 报告第一部分:
Coefficients...
Class
Variable yes
===============================
outlook=sunny -6.4257
outlook=overcast 13.5922
outlook=rainy -5.6562
temperature -0.0776
humidity -0.1556
windy 3.7317
Intercept 22.234
1.1)我是否正确理解“系数”实际上是在将它们加在一起以产生等于“是”的类属性“play”的值之前应用于每个属性的权重?
2) 报告第二部分:
Odds Ratios...
Class
Variable yes
===============================
outlook=sunny 0.0016
outlook=overcast 799848.4264
outlook=rainy 0.0035
temperature 0.9254
humidity 0.8559
windy 41.7508
2.1) “优势比”是什么意思?2.2)它们是否也都与等于“yes”的类属性“play”有关?2.3) 为什么“outlook=overcast”的值比“outlook=sunny”的值大很多?
3)
=== Confusion Matrix ===
a b <-- classified as
7 2 | a = yes
1 4 | b = no
3.1) 混淆矩阵的含义是什么?
非常感谢你的帮助!