这是一个更笼统的问题,但是,无论我阅读多少次 MATLAB 的 im2col 函数的描述,我都无法完全理解它。我需要它来提高计算效率,因为 MATLAB 的嵌套 for 循环很糟糕。这是我正在尝试做的,但使用嵌套的 for 循环:
[TRIMMED]=TM_FILTER(IMAGE, FILTER_SIZE, PERCENT)
Takes a 2-D array and returns the array, filtered with a
square trimed mean filter with length/width equal to FILTER_SIZE and percent equal to PERCENT.
%}
function [trimmed]=tm_filter(image, filter_size, percent)
if rem(filter_size, 2)==0 %make sure filter has a center pixel
error('filter size must be odd numbered'); %error and return if number is odd
return
end
if percent > 100 || percent < 0
error('Percentage must be ? [0, 100]');
return
end
[rows, columns]=size(image); %figure out pixels needed
n=(filter_size-1)/2; %n is pixel distance from center pixel to boundaries
padded=(padarray(image, [n,n],128)); %padding on boundaries so center pixel always has neighborhood
for i=1+n:rows %rows from first non-padded entry to last nonpadded entry
for j=1+n:columns %colums from first non-padded entry to last nonpadded entry
subimage=padded(i-n:i+n,j-n:j+n); %neighborhood same size as filter
average=trimmean(trimmean(subimage, percent), percent); %computes trimmed mean of neighborhood as trimmed mean of vector of trimmed means
trimmed(i-n, j-n)=average; %stores averaged pixel in new array
end
end
trimmed=uint8(trimmed); %converts image to gray levels from 0-255