有我的代码(我认为这是最简单的方法)。我在 jupyter notebook 中完成了这个。Simpson 方法最简单、最准确的代码是 1/3。
解释
对于标准方法 (a=0, h=4, b=12) 和 f=100-(x^2)/2
我们得到:n= 3.0, y0 = 100.0, y1 = 92.0, y2 = 68.0, y3 = 28.0,
所以辛普森方法 = h/3*(y0+4*y1+2*y2+y3) = 842,7(这不是真的)。使用 1/3 规则,我们得到:
h = h/2= 4/2= 2 然后:
n= 3.0, y0 = 100.0, y1 = 98.0, y2 = 92.0, y3 = 82.0, y4 = 68.0, y5 = 50.0, y6 = 28.0,
现在我们计算每一步的积分(n=3 = 3 步):
第一步的积分:h/3*(y0+4*y1+y2) = 389.3333333333333
第二步的积分:h/3*(y2+4*y3+y4) = 325.3333333333333
第三步的积分:h/3*(y4+4*y5+y6) = 197.33333333333331
总和,我们得到 912.0,这是真的
x=0
b=12
h=4
x=float(x)
h=float(h)
b=float(b)
a=float(x)
def fun(x):
return 100-(x**2)/2
h=h/2
l=0 #just numeration
print('n=',(b-x)/(h*2))
n=int((b-a)/h+1)
y = [] #tablica/lista wszystkich y / list of all "y"
yf = []
for i in range(n):
f=fun(x)
print('y%s' %(l),'=',f)
y.append(f)
l+=1
x+=h
print(y,'\n')
n1=int(((b-a)/h)/2)
l=1
for i in range(n1):
nf=(h/3*(y[+0]+4*y[+1]+y[+2]))
y=y[2:] # with every step, we deleting 2 first "y" and we move 2 spaces to the right, i.e. y2+4*y3+y4
print('Całka dla kroku/Integral for a step',l,'=',nf)
yf.append(nf)
l+=1
print('\nWynik całki/Result of the integral =', sum(yf) )
一开始我添加了简单的数据输入:
d=None
while(True):
print("Enter your own data or enter the word "test" for ready data.\n")
x=input ('Enter the beginning of the interval (a): ')
if x == 'test':
x=0
h=4 #krok (Δx)
b=12 #granica np. 0>12
#w=(20*x)-(x**2) lub (1+x**3)**(1/2)
break
h=input ('Enter the size of the integration step (h): ')
if h == 'test':
x=0
h=4
b=12
break
b=input ('Enter the end of the range (b): ')
if b == 'test':
x=0
h=4
b=12
break
d=input ('Give the function pattern: ')
if d == 'test':
x=0
h=4
b=12
break
elif d != -9999.9:
break
x=float(x)
h=float(h)
b=float(b)
a=float(x)
if d == None or d == 'test':
def fun(x):
return 100-(x**2)/2 #(20*x)-(x**2)
else:
def fun(x):
w = eval(d)
return w
h=h/2
l=0 #just numeration
print('n=',(b-x)/(h*2))
n=int((b-a)/h+1)
y = [] #tablica/lista wszystkich y / list of all "y"
yf = []
for i in range(n):
f=fun(x)
print('y%s' %(l),'=',f)
y.append(f)
l+=1
x+=h
print(y,'\n')
n1=int(((b-a)/h)/2)
l=1
for i in range(n1):
nf=(h/3*(y[+0]+4*y[+1]+y[+2]))
y=y[2:]
print('Całka dla kroku/Integral for a step',l,'=',nf)
yf.append(nf)
l+=1
print('\nWynik całki/Result of the integral =', sum(yf) )