3

使用正弦输入,我试图修改它的频率,削减频谱中的一些较低频率,将主频率移向零。由于信号没有 fftshift,我试图通过在 fft 向量的开头和结尾消除一些样本来做到这一点:

interval = 1;
samplingFrequency = 44100;
signalFrequency = 440;
sampleDuration = 1 / samplingFrequency;
timespan = 1 : sampleDuration : (1 + interval);
original = sin(2 * pi * signalFrequency * timespan);
fourierTransform = fft(original);
frequencyCut = 10; %% Hertz
frequencyCut = floor(frequencyCut * (length(pattern) / samplingFrequency) / 4); %% Samples
maxFrequency = length(fourierTransform) - (2 * frequencyCut);
signal = ifft(fourierTransform(frequencyCut + 1:maxFrequency), 'symmetric');

但它没有按预期工作。我还尝试去除频谱的中心部分,但它也使用了更高频率的正弦波。

如何使它正确?

4

2 回答 2

2

一种粗略的方法是将您的频谱下采样一个因子n

% downsample by a factor of 2
n = 2; % downsampling factor
newSpectrum = fourierTransform(1:n:end);

要使其成为原始时间轴上的低频信号,您需要在正端和负端将此向量补零至原始长度。使用 fftshift 将变得更加简单:

pad = length(fourierTransform);
fourierTransform = [zeros(1,pad/4) fftshift(newSpectrum) zeros(1,pad/4)];

要恢复降档的信号,请在应用逆变换之前向后移回:

signal = ifft(fftshift(fourierTransform));

编辑:这是一个完整的脚本,它生成一个比较原始信号和降档信号的图:

% generate original signal
interval = 1;
samplingFrequency = 44100;
signalFrequency = 440;
sampleDuration = 1 / samplingFrequency;
timespan = 1 : sampleDuration : (1 + interval);
original = sin(2 * pi * signalFrequency * timespan);

% plot original signal
subplot(211)
plot(timespan(1:1000),original(1:1000))
title('Original signal')

fourierTransform = fft(original)/length(original);

% downsample spectrum by a factor of 2
n = 2; % downsampling factor
newSpectrum = fourierTransform(1:n:end);

% zero-pad the positive and negative ends of the spectrum
pad = floor(length(fourierTransform)/4);
fourierTransform = [zeros(1,pad) fftshift(newSpectrum) zeros(1,pad)];

% inverse transform
signal = ifft(length(original)*fftshift(fourierTransform),'symmetric');

% plot the downshifted signal
subplot(212)
plot(timespan(1:1000),signal(1:1000))
title('Shifted signal')

原始信号和降档信号图 http://img5.imageshack.us/img5/5426/downshift.png

于 2009-09-25T20:05:06.437 回答
2

@las3rjock:

它更像是对信号本身进行下采样,而不是 FFT .. 看看downsample

或者您可以创建一个时间序列对象,并使用resample方法对其进行重新采样。

编辑:

一个类似的例子:)

% generate a signal
Fs = 200;
f = 5;
t = 0:1/Fs:1-1/Fs;
y = sin(2*pi * f * t) + sin(2*pi * 2*f * t) + 0.3*randn(size(t));

% downsample
n = 2;
yy = downsample([t' y'], n);

% plot
subplot(211), plot(t,y), axis([0 1 -2 2])
subplot(212), plot(yy(:,1), yy(:,2)), axis([0 1 -2 2])

截屏

于 2009-09-25T20:12:32.647 回答