更新:使用 scipy.sparse 添加了实现
这按顺序给出了解决方案N_max,...,N_0,M_max,...,M_1
。
要求解的线性系统是形状A dot x == const 1-vector
。
x
是寻求的解决方案向量。
在这里,我对方程进行了排序,x
即N_max,...,N_0,M_max,...,M_1
。然后我从 4 个块矩阵
构建- 系数矩阵。A
这是示例案例的快照,n=50
展示了如何导出系数矩阵并理解块结构。系数矩阵A
为浅蓝色,常数右侧为橙色。寻求的解决方案向量x
在这里是浅绿色的,用于标记列。第一列显示了上述给定方程中的哪一个。行 (= eq.) 已导出:
正如 Jaime 所建议的,乘以n
改进代码。这没有反映在上面的电子表格中,但已在下面的代码中实现:
使用 numpy 实现:
import numpy as np
import numpy.linalg as linalg
def solve(n):
# upper left block
n_to_M = -2. * np.eye(n-1)
# lower left block
n_to_N = (n * np.eye(n-1)) - np.diag(np.arange(n-2, 0, -1), 1)
# upper right block
m_to_M = n_to_N.copy()
m_to_M[1:, 0] = -np.arange(1, n-1)
# lower right block
m_to_N = np.zeros((n-1, n-1))
m_to_N[:,0] = -np.arange(1,n)
# build A, combine all blocks
coeff_mat = np.hstack(
(np.vstack((n_to_M, n_to_N)),
np.vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return linalg.solve(coeff_mat, const)
使用 scipy.sparse 的解决方案:
from scipy.sparse import spdiags, lil_matrix, vstack, hstack
from scipy.sparse.linalg import spsolve
import numpy as np
def solve(n):
nrange = np.arange(n)
diag = np.ones(n-1)
# upper left block
n_to_M = spdiags(-2. * diag, 0, n-1, n-1)
# lower left block
n_to_N = spdiags([n * diag, -nrange[-1:0:-1]], [0, 1], n-1, n-1)
# upper right block
m_to_M = lil_matrix(n_to_N)
m_to_M[1:, 0] = -nrange[1:-1].reshape((n-2, 1))
# lower right block
m_to_N = lil_matrix((n-1, n-1))
m_to_N[:, 0] = -nrange[1:].reshape((n-1, 1))
# build A, combine all blocks
coeff_mat = hstack(
(vstack((n_to_M, n_to_N)),
vstack((m_to_M, m_to_N))))
# const vector, right side of eq.
const = n * np.ones((2 * (n-1),1))
return spsolve(coeff_mat.tocsr(), const).reshape((-1,1))
示例n=4
:
[[ 7.25 ]
[ 7.76315789]
[ 8.10526316]
[ 9.47368421] # <<< your result
[ 9.69736842]
[ 9.78947368]]
示例n=10
:
[[ 24.778976 ]
[ 25.85117842]
[ 26.65015984]
[ 27.26010007]
[ 27.73593401]
[ 28.11441922]
[ 28.42073207]
[ 28.67249606]
[ 28.88229939]
[ 30.98033266] # <<< your result
[ 31.28067182]
[ 31.44628982]
[ 31.53365219]
[ 31.57506477]
[ 31.58936225]
[ 31.58770694]
[ 31.57680467]
[ 31.560726 ]]