我一直在尝试从 wikipedia 实现该算法,虽然它从不输出复合数作为素数,但它输出了 75% 的素数作为复合数。
最多 1000 它给了我这个素数输出:
3、5、7、11、13、17、41、97、193、257、641、769
据我所知,我的实现与伪代码算法完全相同。我已经逐行调试它,它产生了所有预期的变量值(我跟着我的计算器)。这是我的功能:
bool primeTest(int n)
{
int s = 0;
int d = n - 1;
while (d % 2 == 0)
{
d /= 2;
s++;
}
// this is the LOOP from the pseudo-algorithm
for (int i = 0; i < 10; i++)
{
int range = n - 4;
int a = rand() % range + 2;
//int a = rand() % (n/2 - 2) + 2;
bool skip = false;
long x = long(pow(a, d)) % n;
if (x == 1 || x == n - 1)
continue;
for (int r = 1; r < s; r++)
{
x = long(pow(x, 2)) % n;
if (x == 1)
{
// is not prime
return false;
}
else if (x == n - 1)
{
skip = true;
break;
}
}
if (!skip)
{
// is not prime
return false;
}
}
// is prime
return true;
}
任何帮助将不胜感激 D:
编辑:这是整个程序,按照你们的建议进行了编辑 - 现在输出更加破碎:
bool primeTest(int n);
int main()
{
int count = 1; // number of found primes, 2 being the first of course
int maxCount = 10001;
long n = 3;
long maxN = 1000;
long prime = 0;
while (count < maxCount && n <= maxN)
{
if (primeTest(n))
{
prime = n;
cout << prime << endl;
count++;
}
n += 2;
}
//cout << prime;
return 0;
}
bool primeTest(int n)
{
int s = 0;
int d = n - 1;
while (d % 2 == 0)
{
d /= 2;
s++;
}
for (int i = 0; i < 10; i++)
{
int range = n - 4;
int a = rand() % range + 2;
//int a = rand() % (n/2 - 2) + 2;
bool skip = false;
//long x = long(pow(a, d)) % n;
long x = a;
for (int z = 1; z < d; z++)
{
x *= x;
}
x = x % n;
if (x == 1 || x == n - 1)
continue;
for (int r = 1; r < s; r++)
{
//x = long(pow(x, 2)) % n;
x = (x * x) % n;
if (x == 1)
{
return false;
}
else if (x == n - 1)
{
skip = true;
break;
}
}
if (!skip)
{
return false;
}
}
return true;
}
现在素数的输出,从 3 到 1000(和以前一样)是:
3、5、17、257
我现在看到 x 变得太大了,它只是变成了一个垃圾值,但直到我删除了“% n”部分,我才看到这一点。