29
# data 
set.seed (123)
xvar <- c(rnorm (1000, 50, 30), rnorm (1000, 40, 10), rnorm (1000, 70, 10))
yvar <-   xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)


# density plot for xvar
            upperp = 80   # upper cutoff
            lowerp = 30   # lower cutoff
            x <- myd$xvar
            plot(density(x))
            dens <- density(x)
            x11 <- min(which(dens$x <= lowerp))
            x12 <- max(which(dens$x <= lowerp))
            x21 <- min(which(dens$x > upperp))
            x22 <- max(which(dens$x > upperp))
            with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
                y = c(0, y[x11:x12], 0), col = "green"))
             with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
                y = c(0, y[x21:x22], 0), col = "red"))
            abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")
# density plot with yvar
    upperp = 70  # upper cutoff
    lowerp = 30   # lower cutoff
    x <- myd$yvar
    plot(density(x))
    dens <- density(x)
    x11 <- min(which(dens$x <= lowerp))
    x12 <- max(which(dens$x <= lowerp))
    x21 <- min(which(dens$x > upperp))
    x22 <- max(which(dens$x > upperp))
    with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
        y = c(0, y[x11:x12], 0), col = "green"))
     with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
        y = c(0, y[x21:x22], 0), col = "red"))
    abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")

我需要绘制两种密度图,我不确定是否有比以下更好的方法:

ggplot(myd,aes(x=xvar,y=yvar))+
    stat_density2d(aes(fill=..level..), geom="polygon") +
    scale_fill_gradient(low="blue", high="green") + theme_bw()

我想将所有三种类型合二为一(我不知道是否可以在 ggplot 中创建双向图),对于解决方案是在 ggplot 中还是在基础中还是在混合中并没有偏好。考虑到 R 的稳健性,我希望这是一个可行的项目。我个人更喜欢 ggplot2。

在此处输入图像描述

注意:此图中的下阴影不正确,xvar 和 yvar 图中的红色应始终在下方,绿色应始终在上方,对应于 xy 密度图中的阴影区域。

编辑:对图表的最终期望(感谢 seth 和 jon 的非常接近的答案)(1)删除空间和轴刻度标签等以使其紧凑
(2)网格对齐,以便中间绘图刻度和网格应与侧刻度对齐和地块的标签和大小看起来相同。 在此处输入图像描述

4

3 回答 3

26

这是将多个图与对齐组合的示例:

library(ggplot2)
library(grid)

set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <-   xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)

p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
  stat_density2d(aes(fill=..level..), geom="polygon") +
  coord_cartesian(c(0, 150), c(0, 150)) +
  opts(legend.position = "none")

p2 <- ggplot(myd, aes(x = xvar)) + stat_density() +
  coord_cartesian(c(0, 150))
p3 <- ggplot(myd, aes(x = yvar)) + stat_density() + 
  coord_flip(c(0, 150))

gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))

gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)

gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
                                  1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
                                 1, 3, 1, 3, clip = "off")

gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
                                 4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
                                 5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)

在此处输入图像描述

请注意,这适用于 gglot2 0.9.1,在未来的版本中,您可能会更轻松地做到这一点。

最后

你可以这样做:

library(ggplot2)
library(grid)

set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <-   xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)

p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
  stat_density2d(aes(fill=..level..), geom="polygon") +
  geom_polygon(aes(x, y), 
               data.frame(x = c(-Inf, -Inf, 30, 30), y = c(-Inf, 30, 30, -Inf)),
               alpha = 0.5, colour = NA, fill = "red") +
  geom_polygon(aes(x, y), 
               data.frame(x = c(Inf, Inf, 80, 80), y = c(Inf, 80, 80, Inf)),
               alpha = 0.5, colour = NA, fill = "green") +
  coord_cartesian(c(0, 120), c(0, 120)) +
  opts(legend.position = "none")

xd <- data.frame(density(myd$xvar)[c("x", "y")])
p2 <- ggplot(xd, aes(x, y)) + 
  geom_area(data = subset(xd, x < 30), fill = "red") +
  geom_area(data = subset(xd, x > 80), fill = "green") +
  geom_line() +
  coord_cartesian(c(0, 120))

yd <- data.frame(density(myd$yvar)[c("x", "y")])
p3 <- ggplot(yd, aes(x, y)) + 
  geom_area(data = subset(yd, x < 30), fill = "red") +
  geom_area(data = subset(yd, x > 80), fill = "green") +
  geom_line() +
  coord_flip(c(0, 120))

gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))

gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)

gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
                                  1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
                                 1, 3, 1, 3, clip = "off")

gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
                                 4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
                                 5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)

在此处输入图像描述

于 2012-07-21T07:48:49.873 回答
10

正如我上面链接的示例一样,您需要 gridExtra 包。这是你给的g。

g=ggplot(myd,aes(x=xvar,y=yvar))+
    stat_density2d(aes(fill=..level..), geom="polygon") +
    scale_fill_gradient(low="blue", high="green") + theme_bw()

使用 geom_rect 绘制两个区域

gbig=g+geom_rect(data=myd,
        aes(  NULL,
            NULL,
            xmin=0,
            xmax=lowerp,
            ymin=-10,
            ymax=20),
        fill='red',
        alpha=.0051,
        inherit.aes=F)+
  geom_rect(aes(    NULL,
            NULL,
            xmin=upperp,
            xmax=100,
            ymin=upperp,
            ymax=130),
            fill='green',
            alpha=.0051,
            inherit.aes=F)+
  opts(legend.position = "none") 

这是一个简单的 ggplot 直方图;它缺少你的彩色区域,但它们很容易

  dens_top <- ggplot()+geom_density(aes(x))
  dens_right <- ggplot()+geom_density(aes(x))+coord_flip()

制作一个空图来填充角落

  empty <- ggplot()+geom_point(aes(1,1), colour="white")+
              opts(axis.ticks=theme_blank(), 
                   panel.background=theme_blank(), 
                   axis.text.x=theme_blank(), 
                   axis.text.y=theme_blank(),           
                   axis.title.x=theme_blank(), 
                   axis.title.y=theme_blank())

然后使用 grid.arrange 函数:

library(gridExtra)

grid.arrange(dens_top,     empty     , 
             gbig,         dens_right, 
                 ncol=2, 
                 nrow=2, 
                 widths=c(4, 1), 
                 heights=c(1, 4))

在此处输入图像描述

不是很漂亮,但想法就在那里。您还必须确保秤也匹配!

于 2012-07-18T19:46:53.097 回答
9

基于赛斯的回答(谢谢赛斯,你值得所有的功劳),我改进了提问者提出的一些问题。由于评论太短而无法回答所有问题,我选择将其用作答案本身。 仍然存在一些问题,需要您的帮助

# data
set.seed (123)
xvar <- c(rnorm (1000, 50, 30), rnorm (1000, 40, 10), rnorm (1000, 70, 10))
yvar <-   xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)

require(ggplot2)

# density plot for xvar
upperp = 80   # upper cutoff
lowerp = 30

中间图

 g=ggplot(myd,aes(x=xvar,y=yvar))+
    stat_density2d(aes(fill=..level..), geom="polygon") +
    scale_fill_gradient(low="blue", high="green") + 
  scale_x_continuous(limits = c(0, 110)) + 
   scale_y_continuous(limits = c(0, 110)) + theme_bw()

geom_rect 两个区域

gbig=g+ geom_rect(data=myd, aes(  NULL,  NULL, xmin=0,  
xmax=lowerp,ymin=0, ymax=20), fill='red', alpha=.0051,inherit.aes=F)+ 
geom_rect(aes(NULL,  NULL,   xmin=upperp,            xmax=110, 
 ymin=upperp,            ymax=110),            fill='green',            
  alpha=.0051,
            inherit.aes=F)+   
  opts(legend.position = "none", 
  plot.margin = unit(rep(0, 4), "lines"))

带阴影区域的顶部直方图

    x.dens <- density(myd$xvar)
    df.dens <- data.frame(x = x.dens$x, y = x.dens$y)

   dens_top <- ggplot()+geom_density(aes(myd$xvar, y = ..density..))
+ scale_x_continuous(limits = c(0, 110)) +
geom_area(data = subset(df.dens, x <= lowerp), aes(x=x,y=y), fill = 'red') 
 +  geom_area(data = subset(df.dens, x >= upperp), aes(x=x,y=y), fill = 'green') 
 +    opts (axis.text.x=theme_blank(), axis.title.x=theme_blank(), 
  plot.margin = unit(rep(0, 4), "lines")) + xlab ("") + ylab ("") +  theme_bw()

带阴影区域的右直方图

   y.dens <- density(myd$yvar)
    df.dens.y <- data.frame(x = y.dens$x, y = y.dens$y)

    dens_right <- ggplot()+geom_density(aes(myd$yvar, y = ..density..))
   + scale_x_continuous(limits = c(0, 110)) +
  geom_area(data = subset(df.dens.y, x <= lowerp), aes(x=x,y=y), 
  fill = 'red') 
  +  geom_area(data = subset(df.dens.y, x >= upperp), aes(x=x,y=y), 
  fill = 'green')
    +      coord_flip() + 


opts (axis.text.x=theme_blank(), axis.title.x=theme_blank(), 
   plot.margin = unit(rep(0, 4), "lines")) + xlab ("") + ylab ("") 
   +  theme_bw()

制作一个空图来填充角落

       empty <- ggplot()+geom_point(aes(1,1), colour="white")+ 
       scale_x_continuous(breaks = NA) + scale_y_continuous(breaks = NA) +
              opts(axis.ticks=theme_blank(),
                   panel.background=theme_blank(),
                   axis.text.x=theme_blank(),
                   axis.text.y=theme_blank(),
                   axis.title.x=theme_blank(),
                   axis.title.y=theme_blank())

然后使用 grid.arrange 函数:

library(gridExtra)
 grid.arrange(dens_top, empty , gbig, dens_right, ncol=2,nrow=2,
 widths=c(2, 1), heights=c(1, 2))

在此处输入图像描述

PS:(1)有人可以帮助完美对齐图表吗?(2) 有人可以帮助删除图之间的额外空间,我尝试调整边距 - 但 x 和 y 密度图和中心图之间有空间。

于 2012-07-19T02:08:31.477 回答