有人告诉我,Frobenius 伪素数算法的运行时间是 Miller-Rabin 素数检验的三倍,但分辨率却是七倍。因此,如果前者运行 10 次,后者运行 30 次,两者的运行时间相同,但前者的分析能力提高了 233%。在试图找出如何进行测试时,最后发现了以下带有算法的论文:
尝试实现下面的算法,但程序从不打印出数字。请更熟悉数学符号或算法的人验证发生了什么?
编辑 1:下面的代码添加了更正,但compute_wm_wm1
缺少实现。有人可以从算法的角度解释递归定义吗?这对我来说不是“点击”。
编辑2:错误代码已被删除,并在compute_wm_wm1
下面添加了该功能的实现。它似乎有效,但可能需要进一步优化才能实用。
from random import SystemRandom
from fractions import gcd
random = SystemRandom().randrange
def find_prime_number(bits, test):
number = random((1 << bits - 1) + 1, 1 << bits, 2)
while True:
for _ in range(test):
if not frobenius_pseudoprime(number):
break
else:
return number
number += 2
def frobenius_pseudoprime(integer):
assert integer & 1 and integer >= 3
a, b, d = choose_ab(integer)
w1 = (a ** 2 * extended_gcd(b, integer)[0] - 2) % integer
m = (integer - jacobi_symbol(d, integer)) >> 1
wm, wm1 = compute_wm_wm1(w1, m, integer)
if w1 * wm != 2 * wm1 % integer:
return False
b = pow(b, (integer - 1) >> 1, integer)
return b * wm % integer == 2
def choose_ab(integer):
a, b = random(1, integer), random(1, integer)
d = a ** 2 - 4 * b
while is_square(d) or gcd(2 * d * a * b, integer) != 1:
a, b = random(1, integer), random(1, integer)
d = a ** 2 - 4 * b
return a, b, d
def is_square(integer):
if integer < 0:
return False
if integer < 2:
return True
x = integer >> 1
seen = set([x])
while x * x != integer:
x = (x + integer // x) >> 1
if x in seen:
return False
seen.add(x)
return True
def extended_gcd(n, d):
x1, x2, y1, y2 = 0, 1, 1, 0
while d:
n, (q, d) = d, divmod(n, d)
x1, x2, y1, y2 = x2 - q * x1, x1, y2 - q * y1, y1
return x2, y2
def jacobi_symbol(n, d):
j = 1
while n:
while not n & 1:
n >>= 1
if d & 7 in {3, 5}:
j = -j
n, d = d, n
if n & 3 == 3 == d & 3:
j = -j
n %= d
return j if d == 1 else 0
def compute_wm_wm1(w1, m, n):
a, b = 2, w1
for shift in range(m.bit_length() - 1, -1, -1):
if m >> shift & 1:
a, b = (a * b - w1) % n, (b * b - 2) % n
else:
a, b = (a * a - 2) % n, (a * b - w1) % n
return a, b
print('Probably prime:\n', find_prime_number(300, 10))