0

场景是这样的,我有一个图像,我只想从中提取文本以进行进一步的 OCR 处理,我试图通过腐蚀和膨胀来删除徽标,但是当卡片的背景中有图像或卡片是时它失败了分成2种不同的颜色,所以我想计算卡片的直方图,然后过滤文本,因为它将在背景或任何其他非文本区域中具有最小的峰值我得到这个opencv代码来计算图像的直方图

OpenCV 代码:

IplImage* trueColorImage = cvLoadImage("plastics.jpg");
TrueColorIplImg=[self CreateIplImageFromUIImage:trueColorImage];
IplImage* channel = cvCreateImage( cvGetSize(TrueColorIplImg), 8, 1);
IplImage *hist_img = cvCreateImage(cvSize(300,240), 8, 1);
cvSet( hist_img, cvScalarAll(255), 0 );
CvHistogram *hist_red;
CvHistogram *hist_green;
CvHistogram *hist_blue;
int hist_size = 256;      
float range[]={0,256};
float* ranges[] = { range };
float max_value = 0.0;
float max = 0.0;
float w_scale = 0.0;
hist_red = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
hist_green = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
hist_blue = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
cvSetImageCOI(TrueColorIplImg,3);
cvCopy(TrueColorIplImg,channel);
cvResetImageROI(TrueColorIplImg);
cvCalcHist( &channel, hist_red, 0, NULL );
cvSetImageCOI(TrueColorIplImg,2);
cvCopy(TrueColorIplImg,channel);
cvResetImageROI(TrueColorIplImg);
cvCalcHist( &channel, hist_green, 0, NULL );
cvSetImageCOI(TrueColorIplImg,1);
cvCopy(TrueColorIplImg,channel);
cvResetImageROI(TrueColorIplImg);
cvCalcHist( &channel, hist_blue, 0, NULL );
cvGetMinMaxHistValue( hist_red, 0, &max_value, 0, 0 );
cvGetMinMaxHistValue( hist_green, 0, &max, 0, 0 );
max_value = (max > max_value) ? max : max_value;
cvGetMinMaxHistValue( hist_blue, 0, &max, 0, 0 );
max_value = (max > max_value) ? max : max_value;    
cvScale( hist_red->bins, hist_red->bins, ((float)hist_img->height)/max_value, 0 );
cvScale( hist_green->bins, hist_green->bins, ((float)hist_img->height)/max_value, 0 );
cvScale( hist_blue->bins, hist_blue->bins, ((float)hist_img->height)/max_value, 0 );
printf("Scale: %4.2f pixels per 100 units\n", max_value*100/((float)hist_img->height));                         
w_scale = ((float)hist_img->width)/hist_size;
 for( int i = 0; i < hist_size; i++ )
{
    cvRectangle( hist_img, cvPoint((int)i*w_scale , hist_img->height),
                cvPoint((int)(i+1)*w_scale, hist_img->height - cvRound(cvGetReal1D(hist_red->bins,i))),
                CV_RGB(255,0,0), -1, 8, 0 );
    cvRectangle( hist_img, cvPoint((int)i*w_scale , hist_img->height),
                cvPoint((int)(i+1)*w_scale, hist_img->height - cvRound(cvGetReal1D(hist_green->bins,i))),
                CV_RGB(0,255,0), -1, 8, 0 );
    cvRectangle( hist_img, cvPoint((int)i*w_scale , hist_img->height),
                cvPoint((int)(i+1)*w_scale, hist_img->height - cvRound(cvGetReal1D(hist_blue->bins,i))),
                CV_RGB(0,0,255), -1, 8, 0 );
}
4

1 回答 1

4

生成直方图很容易,OpenCV 的文档中提供了代码。所以你并没有真正给我们任何有用的东西。剩下的任务才是真正的挑战所在。我很想看到你尝试处理这个问题。

我从您的其他问题中注意到您对这个问题非常感兴趣。我需要说,解决它可能比你以前想象的要复杂一些。您可能希望稍微限制您要解决的问题的范围,因为为所有类型的名片开发通用检测系统将非常困难!

我做了一些研究,我将与你分享我发现的一些有趣的材料:

于 2012-04-24T17:37:23.883 回答