所以我有一个 MODIS NDVI 值的时间序列(非地理极客的植被值从 0 到 1),我试图通过使用for
循环来近似导数。
这是我的数据样本:
> m2001
date value valnorm
1 1 0.4834 0.03460912
2 17 0.4844 0.03664495
3 33 0.5006 0.06962541
4 49 0.4796 0.02687296
5 65 0.5128 0.09446254
6 81 0.4915 0.05109935
7 97 0.4664 0.00000000
8 113 0.5345 0.13864007
9 129 0.8771 0.83611564
10 145 0.9529 0.99043160
11 161 0.9250 0.93363192
12 177 0.9450 0.97434853
13 193 0.9491 0.98269544
14 209 0.9434 0.97109121
15 225 0.9576 1.00000000
16 241 0.8992 0.88110749
17 257 0.9115 0.90614821
18 273 0.8361 0.75264658
19 289 0.5725 0.21600163
20 305 0.5188 0.10667752
21 321 0.5467 0.16347720
22 337 0.5484 0.16693811
23 353 0.5427 0.15533388
- 第 1 列是像素值的儒略日
- 第 2 列是原始 NDVI 值
- 第 3 列是从 0-1 延伸的 NDVI(这是一种标准化技术,因为 NDVI 实际上很少达到 1 或 0)。
我对编程和 R 还是很陌生,但我想我已经设法拼凑出对它的薄弱掌握。我要做的是创建一个新列,其值可以让我对数据点的局部斜率有所了解。
我想出的功能是这样的:
deriv <- function(x1=1:23, x2=1){
for (i in x1){
i1 <- c(x1[i-1], x1[i], x1[i+1])
i2 <- c(x2[i-1], x2[i], x2[i+1])
deriv.func <- lm(i2~i1, na.action=NULL)
} return(deriv.func$coef[[2]])
}
当我运行它时会发生什么:
> deriv <- function(x1=1:23, x2=1){
+ for (i in x1){
+ i1 <- c(x1[i-1], x1[i], x1[i+1])
+ i2 <- c(x2[i-1], x2[i], x2[i+1])
+ deriv.func <- lm(i2~i1, na.action=NULL)
+ } return(deriv.func$coef[[2]])
Error: unexpected symbol in:
"deriv.func <- lm(i2~i1, na.action=NULL)
} return"
> }
Error: unexpected '}' in "}"
>
我不确定我做错了什么,因为当我为 i 填写一个值时,我可以解析它
> i=6
> x1=m2001$date
> x2=m2001$valnorm
> i1 <- c(x1[i-1], x1[i], x1[i+1])
> i2 <- c(x2[i-1], x2[i], x2[i+1])
> i1
[1] 33 49 65
> i2
[1] 0.06962541 0.02687296 0.09446254
> lm(i2 ~ i1)
Call:
lm(formula = i2 ~ i1)
Coefficients:
(Intercept) i1
0.0256218 0.0007762
> func <- lm(i2 ~ i1)
> func$coef[[2]]
[1] 0.0007761604
有任何想法吗?万分感谢。