问题标签 [aesthetics]
For questions regarding programming in ECMAScript (JavaScript/JS) and its various dialects/implementations (excluding ActionScript). Note JavaScript is NOT the same as Java! Please include all relevant tags on your question; e.g., [node.js], [jquery], [json], [reactjs], [angular], [ember.js], [vue.js], [typescript], [svelte], etc.
r - 在一个图表中绘制多条线
我有一个时间序列,显示一年中每 15 分钟的电力负荷。我已经过滤为只显示一个特定的工作日。我的数据框:
现在我想在一个图中为每个星期一绘制几个折线图:x 轴 = 时间戳 y 轴 = 负载
我试过ggplot:
但这给我带来了以下错误
那就是输出,x轴看起来不是连续的吗?
有什么建议么?
python-3.x - 在 Seaborn Countplot 中设置刻度
我已使用以下代码在 seaborn 中设置 xticks,但这不起作用。我的 xticks 标签来自一个列表,并且它们已经正确排序。
r - 来自一个数据集的两个不同图例
我试图有两个图例:一个基于变量 c,另一个基于变量 d,由它们自己的形状和大小定义。我知道这在ggplot2中是否可行?也许它不符合使用 ggplot2 背后的理念。如果我将数据转换为长格式,我可以处理不同的形状,但大小会混淆。如果我使用 facet_wrap 选项,也会发生同样的情况。
任何建议都非常受欢迎。
r - R 中 ggplot 的问题-“f(...) 中的错误:美学不能随丝带而变化”
我正在尝试使用 ggplot 在同一图上绘制三个成分的数据。具体来说,我试图获得一个代表数据分布的堆积线/面积图。这三个成分各有 451 个值,因此我将 runif 值设置为 451。
我正在使用的代码是:
但是,每次我尝试运行代码时,我都会得到代码:
"Error in f(...) : Aesthetics can not vary with a ribbon"
我尝试了多种方法来尝试得出该图,但每种格式都会导致相同的错误消息。任何帮助都会很棒!
r - ggplot2:添加尺寸图例和颜色图例:只有一个自动出现
数据集(originalRfiltered3):
https://www.dropbox.com/s/fekw0o7ybdilnpr/originalRfiltered3.xlsx?dl=0
或在这里输入输出:http: //txt.do/15k69
我正在尝试绘制以下情节
为了实现这一点,我做了以下事情:
我知道我可以在同一 aes 行中指定大小和颜色,但这只会生成一个图例。<--如果你能在这里帮助我,那么我的问题就解决了。
我想生成所附图片中的内容,但不必绘制两组点,这会导致黑色底层点(以便自动生成图例)和第二层彩色点(以便颜色图例生成)。
我尝试用白色生成底层大小的点,这给了我在白色背景的情节中正确的视觉外观,但随后在图例中制作了不同大小的圆圈,这不是我想要的。
我还尝试了 scale_size_manual 并添加了点,但我收到一条错误消息,因为 size 是一个连续变量,所以它不起作用。
dput(originalRfiltered3)结构(列表(infection.cluster = c(“B12_ES079_A”、“B12_ES079_A”、“B12_ES080_A”、“B12_ES080_A”、“B12_ES081_A”、“B12_ES081_A”、“B12_ES083_A”、“B112_ES083_A”、“ "B12_ES084_A", "B12_ES086_A", "B12_ES086_A", "B13_ES029_A", "B13_ES029_A", "B13_ES029_B", "B13_ES029_B", "B13_ES039_A", "B13_ES039_A", "B13_ES039_A", "B13_ES076_A", "B13_ES076_A", "B13_ES076_A ”、“B13_ES076_A”、“B13_ES076_A”、“B13_ES076_A”、“B13_ES081_A”、“B13_ES081_A”、“B13_ES086_A”、“B13_ES086_A”、“B13_ES086_A”、“B13_ES096_A”、“B13_ES0”, "B13_ES101_A", "B13_ES101_A", "B13_ES121_A", "B13_ES121_A", "B19_ES007_A", "B19_ES016_A", "B19_ES016_A", "B19_ES016_B", "B19_ES016_B", "B19_ES016_B", "B19_ES016_B", "B19_ES016_B", " B19_ES016_C", "B19_ES026_A", "B19_ES048_A", "B19_ES048_A", "B19_ES40_A", "B19_ES40_A", "B21_ES001_A", "B21_ES001_A", "B21_ES002_A", "B21_ES002_A", "B21_ES003_A", "B21_ES003_A", "B21_ES004_A" 、“B21_ES004_A”、“B21_ES005_A”、“B21_ES005_A”、“B21_ES006_A”、“B21_ES006_A”、“B21_ES007_A”、“B21_ES007_A”、“B21_ES008_A”、“B21_ES008_A”、“B21_ES009_A", "B21_ES009_A", "B21_ES011_A", "B21_ES011_A", "B21_ES011_A", "B21_ES012_A", "B21_ES012_A", "B21_ES012_A", "B21_ES012_A", "B21_ES012_A", "B21_ES012_A", "B21_ES013_A", "B21_ES013_A" , "B21_ES013_A", "B21_ES014_A", "B22_ES1074_A", "B22_ES1074_A", "B22_ES1074_A", "B22_ES1075_A", "B22_ES1075_A", "B22_ES1075_A", "B22_ES1075_A", "B22_ES1075_A", "B22_ES1075_A", "B22_ES1075_A", " B22_ES1130_A”、“B22_ES1130_B”、“B22_ES1132_A”、“B22_ES1134_A”、“B22_ES1134_A”、“B22_ES1137_A”、“B22_ES1137_A”、“B22_ES1138_A”、“B22_ES1138_A", "B22_ES1138_A", "B22_ES1138_A", "B22_ES1139_A", "B22_ES1139_A", "B22_ES1140_A", "B22_ES1140_A", "B22_ES1140_A", "B22_ES1140_B", "B22_ES1140_B", "B22_ES1141_A", "B22_ES1141_A", "B22_ES1141_A" , "B22_ES1141_A", "B22_ES1141_B", "B22_ES1141_B", "B22_ES1142_A", "B22_ES1142_A", "B22_ES1142_B", "B22_ES1142_B", "B22_ES1142_C", "B22_ES1142_C", "B22_ES1142_C", "B22_ES1144_A", "B22_ES1189_A", " B25_b001”、“B29_ES011_A”、“B29_ES063_A”、“B29_ES063_A”、“B29_ES077_A”、“B3_ES1002_A”、“B3_ES1002_A”、“B3_ES1003_A”、“B3_ES1003_A", "B3_ES1004_A", "B3_ES1004_A", "B3_ES1006_A", "B3_ES1006_A", "B3_ES1008_A", "B3_ES1008_A", "B3_ES1009_A", "B3_ES1010_A", "B3_ES1010_A", "B3_ES1012_A", "B3_ES1012_A", "B3_ES1012_A" ,“ B3_ES1012_A”,“ B3_ES1012_A”,“ B3_ES1012_A”,“ B3_ES1013_A”,“ B3_ES1013_A”,“ B3_ES10114_A”,“ B3_ES1014_A”,“ B3_ES1014_A”,“ B3_ES1018_A”、“B3_ES1018_A”、“B3_ES1018_A”、“B3_ES1018_A”、“B3_ES1019_A”、“B3_ES1019_A”、“B3_ES1020_A”、“B3_ES1021_A”、“B3_ES1021_A”、“B3_ES1022_A", "B3_ES1022_A", "B3_ES1023_A", "B3_ES1023_A", "B3_ES1024_A", "B3_ES1024_A", "B3_ES1024_A", "B3_ES1024_A", "B3_ES1025_A", "B3_ES1026_A", "B3_ES1026_A", "B3_ES1026_A", "B3_ES1027_A" ,“ B3_ES1027_A”,“ B3_ES1027_B”,“ B3_ES1027_B”,“ B3_ES1043_A”,“ B30_ES059_A”,“ B31_ES005_A”,“ B31_ES005_A”,“ B31_ES005_A”,“ B31_ES005_A”,“ “B31_ES009_B”、“B31_ES009_B”、“B31_ES020_A”、“B31_ES020_A”、“B31_ES020_B”、“B31_ES020_B”、“B33_b1_ES002_A”、“B33_b1_ES002_A”、“B33_b1_ES002_B”、B33_b1_ES002_B", "B33_b1_ES003_A", "B33_b1_ES003_A", "B33_b1_ES004_A", "B33_b1_ES004_A", "B33_b1_ES004_B", "B33_b1_ES004_B", "B33_b1_ES005_A", "B33_b1_ES005_A", "B33_b1_ES005_B", "B33_b1_ES005_B", "B33_b2_ES006_A", "B33_b2_ES006_A" , "B33_b2_ES006_B", "B33_b2_ES006_B", "B33_b2_ES007_A", "B33_b2_ES007_A", "B33_b2_ES007_B", "B33_b2_ES007_B", "B33_b2_ES007_C", "B33_b2_ES007_C", "B33_b2_ES008_A", "B33_b2_ES008_A", "B33_b2_ES008_A", "B33_b2_ES008_A", " B33_b3_ES001_A”、“B33_b3_ES001_A”、“B33_b4_ES001_A”、“B33_b4_ES001_A”、“B33_b5_ES001_A”、“B33_b5_ES001_A”, "B33_b6_ES001_A", "B33_b6_ES001_A", "B33_b6_ES003_A", "B33_b6_ES003_A", "B33_b6_ES004_A", "B33_b6_ES005_A", "B33_b6_ES005_A", "B33_b6_ES006_A", "B33_b6_ES006_A", "B34_b1_ES002_A", "B34_b10_ES001_A", "B34_b10_ES001_A", " B34_b10_ES002_A", "B34_b10_ES002_A", "B34_b10_ES003_A", "B34_b10_ES004_A", "B34_b10_ES004_A", "B34_b10_ES005_A", "B34_b10_ES005_A", "B34_b12_ES001_A", "B34_b12_ES001_A", "B34_b12_ES002_A", "B34_b12_ES002_A", "B34_b12_ES003_A", "B34_b12_ES003_A" ,“B34_b12_ES003_A”,“B34_b2_ES001_A”,“B34_b3_ES001_A”,“B34_b3_ES001_A”,“B34_b3_ES002_A”,"B34_b3_ES002_A", "B34_b3_ES003_A", "B34_b3_ES003_A", "B34_b3_ES004_A", "B34_b3_ES004_A", "B34_b3_ES005_A", "B34_b3_ES005_A", "B34_b3_ES005_B", "B34_b5_ES001_A", "B34_b5_ES001_A", "B34_b5_ES002_A", "B34_b5_ES002_A", "B34_b5_ES003_A ", "B34_b5_ES003_A", "B34_b5_ES004_A", "B34_b5_ES004_A", "B34_b5_ES005_A", "B34_b5_ES005_A", "B34_b5_ES005_B", "B34_b5_ES005_B", "B34_b7_ES001_A", "B34_b7_ES001_A", "B34_b7_ES002_A", "B34_b7_ES002_A", "B34_b7_ES002_A", “B34_b7_ES003_A”、“B34_b7_ES003_A”、“B34_b8_ES001_A”、“B34_b8_ES001_A”、“B4_ES1058_A”、“B4_ES1058_A”、“ES11_A”、“ES17_A”、“RT1ES1_A”、“RT1ES1_A”、“RT1ES12_A”、“RT1ES12_A”、“RT1ES2_A”、“RT1ES3_A”、“RT1ES4_A”、“RT1ES5_A”、“RT1ES5_A”、“RT1ES6_A” 、“RT1ES7_A”、“RT1ES7_B”、“RT1ES7_B”、“RT1ES7_B”、“RT1ES8_B”、“RT1ES8_B”、“RT1ES8_B”、“RT1ES9_A”、“RT1ES9_A”、“RT2ES1_A”、“RT2ES1_A”、“RT2ES1_A”、“ RT2ES11_A”、“RT2ES11_A”、“RT2ES13_A”、“RT2ES13_A”、“RT2ES13_A”、“RT2ES15_A”、“RT2ES15_A”、“RT2ES16_A”、“RT2ES2_A”、“RT2ES4_A”、“RT2ES4_A”、“RT2ES6_A”、“RT2ES6_A” , "RT2ES7_A","RT2ES8_A", "RT2ES9_A"), host.length = c(27.1, 27.1, 24.5, 24.5, 28, 28, 31.5, 31.5, 29.2, 29.2, 31.9, 31.9, 21.2, 21.2, 21.2, 21.2, 26.5, 26.5 ,26.5,29.4,29.4,29.4,29.4,29.4,29.4,29.4,26.7,26.7,26.7,26.6,26.6,26.6,26.6,26.6,24.5,24.5,24.5,28.9,28.9,28.9,31.2,31.2,31.2,31.2,26.9 , 27.9, 26.9, 29.2, 28.5, 28.5, 26.5, 26.5, 29.1, 29.1, 27.3, 27.3, 27.3, 27.3, 31.2, 31.2, 19.1, 19.1, 28.5, 28.2, 31.6, 3, 31.3.6 , 30.7, 30.7, 30.7, 27.9, 27.9, 27.9, 27.9, 27.9, 27.9, 28.8, 28.8, 28.8, 33.2, 22.9, 22.9, 22.9, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 17.7, 17.7 , 22.2, 21.9, 21.9, 30.5, 30.5, 22.9, 22.9, 22.9, 22.9, 27.1, 27.1, 24.5, 24.5, 24.5, 24.5, 24.5, 27.5, 27.5, 27.5, 27.5, 27.5, 28.5, 28.1, 28.1, 28.1 , 28.1, 28.1, 28.1, 28.1, 19.6, 17.4, 34.6, 16.1, 25.4, 25.4, 16.9, 27.5, 27.5, 24.6, 24.6, 30.9, 30。9, 26.2, 26.2, 28, 28, 26.8, 34, 34, 19.5, 19.5, 19.5, 19.5, 19.5, 19.5, 30.8, 30.8, 30.7, 30.7, 30.7, 33.4, 33.4, 27.1, 27.2.1, 27.2,, 27.2, 27.2, 27.3, 27.3, 21.4, 22.9, 22.9, 26.7, 26.7, 24, 24, 26.2, 26.2, 26.2, 26.2, 19.4, 22.1, 22.1, 22.1, 19.8, 19.8, 2.2.8, 19.8, 3.2.8 27.4, 27.4, 25.3, 27.9, 27.9, 22.9, 22.9, 22.9, 22.9, 29.1, 29.1, 29.1, 29.1, 36.2, 36.2, 36.2, 36.2, 45.4, 45.4, 32.3, 32.3, 32.3, 32.3, 43.6, 43.6, 43.6, 43.6, 41.4, 41.4, 41.4, 41.4, 39.5, 39.5, 39.5, 39.5, 39.5, 39.5, 47.1, 47.1, 47.1, 47.1, 49.1, 49.1, 31.6, 31.6, 32.9, 32.9, 30.7, 30.7, 30.2, 30.2, 30.8, 32.8, 32.8, 35.8, 35.8, 37.7, 41.4, 41.4, 38.7, 38.7, 34.8, 35.6, 35.6, 39.8, 39.8, 42.4, 42.4, 32, 32, 355.8,, 3..8, 355.8,, 3..8 32.2、30.5、30.5、31.9、31.9、37.8、37.8、39.9、39.9、39.9、41.1、41.1、45.2、45.2、41.3、41.3、46、46、44.1、44.1、44.1、44.38.7, 38.7, 39.2, 39.2, 39.2, 50.7, 50.7, 30.2, 30.2, 22, 22, 24, 25, 31, 31, 27, 27, 30, 30, 32, 30, 30, 27, 27, 27, 27, 27, 26, 26, 26, 28, 28, 34, 34, 34, 28, 28, 30, 30, 30, 25, 25, 27, 32, 29, 29, 34, 34, 29, 26, 31), host.sex = c(“f”, “f”, “f”, “f”, “m”, “m”, “f”, “f”, “m”, “m”, “米”、“米”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“m”、“m”、“m”、“m” ,“m”,“m”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“ f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“m”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f” ,“f”,“f”,“m”,“m”,“f”,“f”,“f”,“f”,“f”,“f”,“m”,“m”,“米”、“米”、“米”、“米”、“米”、“f”、“f”、“f”、“f”、“f”、“f”、“m”、“m” , “m”, “m”, “f”, “f”, “f”, “m”, “m”, “m”, “m”, “m”, “m”, “m”, “ f”、“f”、“f”、“m”、“m”、“m”、“m”、“f”、“f”、“f”、“f”、“m”、“m”、“m”、“m”、“m”、“m”、“m”、“f”、“f” ,“f”,“f”,“f”,“f”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“f”,“ f”、“f”、“f”、“f”、“f”、“m”、“m”、“m”、“m”、“m”、“m”、“m”、“m” , “m”, “f”, “f”, “m”, “f”, “f”, “m”, “m”, “m”, “m”, “m”, “m”, “ f”、“f”、“f”、“f”、“f”、“m”、“m”、“米”、“米”、“f”、“f”、“f”、“f”、“m”、“m”、“f”、“f”、“f”、“f”、“f” , “m”, “m”, “m”, “m”, “m”, “m”, “m”, “f”, “f”, “f”, “m”, “m”, “米”、“米”、“f”、“f”、“f”、“f”、“f”、“米”、“米”、“米”、“米”、“米”、“米” ,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“f”,“ f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“m”、“m”、“m”、“m”、“m”、“m”、“f”、“f”、“f”、“f” ,“f”,“f”,“f”,“f”,“m”,“m”,“f”,“f”,“f”,“f”,“f”,“f”,“ f”、“f”、“f”、“m”、“f”、“f”、“f”、“f”、“m”、“m”、“m”、“m”、“m” ,“f”,“f”,“m”,“m”,“f”,“f”,“f”,“m”,“m”,“m”,“m”,“m”,“米”, “米”, “f”, “f”, “米”, “米”, “米”, “米”、“米”、“米”、“米”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“f”、“m” , “m”, “m”, “m”, “m”, “f”, “f”, “m”, “m”, “m”, “m”, “f”, “m”, “ f”、“f”、“f”、“f”、“m”、“m”、“f”、“m”、“m”、“f”、“f”、“f”、“f” ,“f”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“m”,“米”、“米”、“米”、“米”、“f”、“f”、“米”、“m", "m", "m", "m", "m", "m"), position.simplified = c("dorsal", "dorsal", "pectoral", "pectoral", "pectoral", “胸”、“背”、“背”、“背”、“背”、“前”、“前”、“胸”、“胸”、“胸”、“胸”、“胸”、“胸” ”、“胸”、“背”、“背”、“背”、“背”、“背”、“背”、“骨盆”、“骨盆”、“背”、“背”、“背”、 “胸”、“胸”、“背”、“背”、“胸”、“胸”、“胸”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“生殖”、“背”、“背”、“背” ,“胸”,“胸”,“前”,“前”,“胸”,“胸”,“背”,“背”,“背”,“背”,“背”,“背”,“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背” , "背侧", "背侧", "背侧", "背侧", "背”、“背”、“背”、“骨盆”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背” , “背”, “胸”, “背”, “胸”, “胸”, “胸”, “胸”, “胸”, “背”, “背”, “背”, “背”, “背”、“背”、“胸”、“胸”、“胸”、“背”、“背”、“背”、“背”、“背”、“背”、“前”、“前” ,“背”,“背”,“背”,“背”,“前”、“前”、“前”、“前”、“前”、“背”、“背”、“背”、“背”、“背”、“骨盆”、“骨盆”、“骨盆” ”、“骨盆”、“背”、“背”、“骨盆”、“骨盆”、“胸”、“胸”、“背”、“背”、“背”、“背”、“背”、 “背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“前”、“骨盆”、“骨盆”、“胸”、“胸” ", "背侧", "背侧", "背侧", "背侧",“前”、“前”、“背”、“胸”、“胸”、“背”、“背”、“胸”、“胸”、“胸”、“胸”、“胸”、“胸” ”、“背”、“背”、“背”、“背”、“背”、“背”、“胸”、“胸”、“前”、“胸”、“骨盆”、“骨盆”、 “胸”、“背”、“背”、“前”、“前”、“胸”、“胸”、“胸”、“胸”、“背”、“背”、“胸”、“胸” ", "胸肌", "胸肌", "背”、“背”、“胸”、“胸”、“背”、“背”、“其他”、“其他”、“背”、“背”、“胸”、“胸”、“背” , “背”, “胸”, “胸”, “背”, “背”, “背”, “背”, “背”, “背”, “背”, “背”, “骨盆”, “骨盆”、“前”、“前”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背” ,“背”,“胸”,“背”,“背”,“背”、“背”、“背”、“胸”、“胸”、“背”、“背”、“骨盆”、“骨盆”、“背”、“背”、“胸”、“胸” , “胸”, “背”, “背”, “背”, “背”, “背”, “胸”, “胸”, “骨盆”, “骨盆”, “背”, “背”, “背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“背”、“胸”、“胸”、“背”、“背” , "背侧", "背侧", "背侧", "背侧", "背”, “胸”, “胸”, “胸”, “胸”, “胸”, “胸”, “胸”, “背”, “背”, “背”, “背”, “背” , “背”, “背”, “背”, “背”, “背”, “胸”, “背”, “其他”, “胸”, “胸”, “其他”, “其他”, “其他”、“其他”、“其他”、“背”、“背”、“背”、“胸”、“胸”、“背”、“背”、“背”、“背”、“背” ,“胸”,“背”,“背”,“背”,“背”, “背”, “胸”, “背”, “其他”), number.of.parasites.on.host = c(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 3, 3, 6, 6, 6, 6, 6, 6, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 9, 9, 9, 9, 9, 9, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 7, 7, 7, 7, 7, 7, 3, 3, 3, 1, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 2, 2, 2, 2, 5, 5, 5, 5, 2, 2, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 1, 3, 3, 3, 4, 4, 4, 4, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2,2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 5, 5, 5, 5, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2), tot.clusters = c(1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2 , 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1 , 1, 1, 1, 1, 1, 2, 2, 2,2, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1), of.thorax = c(6.26, 8.51, 6.5, 7.78, 4.26, 5.21, 8.37 , 7.31, 10.23, 9.14, 7.49, 8.54, 5.43, 6.77, 3.75, 4.56, 7.53, 6.96, 9.43, 8.01, 6.47, 4.94, 5.39, 2.75, 2.25, 8.6, 7.22, 8.02, 8.13, 7.59, 6.07, 6.04 , 7.06, 6.79, 8.64, 7.74, 3.71, 6.05, 6.11, 1.25, 1.5, 1, 0.8, 0.8, 4.59, 8.88, 6.94, 7.75, 6.32, 6.83, 8.46, 6.81, 6.21, 8.8, 6.5, 8.8, 6.5, 8.8, 6.5, 6.8 , 8.65, 2.75, 2.25, 10.64, 9.9, 7.94, 6.65, 3, 0.7, 9.98, 7.46, 6.77, 6.45, 1.2, 6.9, 7.28,7.19, 7.23, 6.11, 2.65, 7.9, 6.57, 3.72, 4.84, 4.71, 3.5, 1.25, 4.5, 2.15, 2, 1, 1, 0.75, 0.66, 2, 2, 3.54, 6.18, 4.61, 8.19, 7.14, 7.25, 5.41, 4.52, 3.26, 3.54, 7, 6.35, 3.02, 4.87, 6.31, 7.11, 6.45, 5.41, 6.39, 1.3, 0.9, 6.53, 5.53, 6.57, 2, 5.88, 3.1,.. 1.75, 5, 0.75, 5.69, 6.06, 1.2, 4.81, 4.38, 3.9, 3.7, 9.22, 9.94, 8.2, 6.9, 6.89, 5.97, 2.3, 6.82, 8.26, 2.75, 1.1, 0.3, 0.5,5, 0 8.69、8.15、7.57、8.87、4.99、8.71、9.21、7.34、9.03、4.6、4、2、2.25、7.06、7.55、3、6.48、6.5、2.95、1.57、6.47、7.55、2、9.4、 2.5, 3.5, 5.71, 5.75, 5.17, 2.2, 3.2, 1, 0.5, 4, 1.25, 6.91, 7.86, 5.34, 6.04, 7.2, 5.72, 5.61, 4.47, 8.81, 9.11, 7.35, 6.1, 7.71, 7.8, 7 8.27, 8.1, 6.65, 6.18, 7.74, 9.87, 7.98, 8.96, 9.33, 8.88, 8.14, 9.12, 7.67, 8.09, 7.76, 10.85, 9.65, 8.17, 5.69, 6.98, 9.12, 11.8, 10.69, 10.4, 9.56, 8.43、9.73、9.15、11.83、5.76, 4.78, 6.87, 7.32, 7.55, 7.75, 12.11, 8.51, 8.67, 7.2, 6.68, 10.27, 10.28, 5.68, 10.91, 7.84, 12.31, 10.73, 6.06, 7.14, 7.23, 10.1, 7.04, 10.79, 11.2, 5.62, 7.07, 8.82, 9.93, 8.68, 5.19, 7.06, 5.15, 5.83, 6.09, 7.47, 5.82, 10.28, 12.13, 7.15, 7.06, 9.44, 9.13, 12.74, 10.78, 11.23, 11.65, 9.56, 10.25, 10.94, 12.05, 9.32, 8.22, 7.97, 8.73, 11.77, 11.03, 6.77, 7.95, 11.03, 9, 9.5, 7.84, 6.29, 3.67, 4.1, 4.1, 4.8, 7.5, 3, 4.4, 4.7, 8,.., 8 3.8, 4.6, 4.5, 2.7, 3.3, 3.5, 2.6, 3.4, 5.1, 4.3, 6, 2.9, 4, 4.3, 4, 4.6, 4.7, 6, 7.7, 5, 8.7, 6.6, 4.3, 3.9, 4.6, 5.4, 7.4, 5.7, 4.2, 2.7), parasite.eggs = c(“是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”、“否”、“是”、“是”、“否”、“是”、“否”、“是”、“否”、“是”、“是”、“是”、“是”、“否”、“否”、“否”、“否”、“是”、“是” , “否”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “否”, “是”, “是”, “不”、“不”、“不”、“不”、“不”、“不”、“是”、“是”、“是”、“是”、“是”、“是”、“是” , “是”, “是”, “是”, “否”, “是”, “是”, “否”, “否”, “是”, “是”, “是”, “是”, “不,不”,“是”、“否”、“是”、“否”、“否”、“是”、“是”、“是”、“是”、“是”、“否”、“是”、“是” ”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “不”, “否”、“否”、“否”、“是”、“否”、“是”、“是”、“是”、“否”、“否”、“否”、“否”、“否” ", “否”, “是”, “否”, “是”, “否”, “是”, “是”, “是”, “否”, “否”, “否”, “是”, “不”、“是”、“不”、“不”、“不”、“不”、“不”、“不”、“不”、“不”、“是”、“是”、“不”、“是”、“是” , “否”, “否”, “是”, “是”, “是”, “否”, “是”, “否”, “否”, “是”, “是”, “否”, “不”、“不”、“不”、“不”、“不”、“是”、“是”、“是”、“是”、“不”、“不”、“不”、“是” ,“是”,“是”,“否”,“否”,“否”,“是”,“是”,“否”,“是”,“是”,“否”,“否”,“是”、“否”、“不”、“是”、“不”、“不”、“不”、“是”、“是”、“是”、“不”、“不”、“不”、“不”、“不” , “否”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”, “是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是” ,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是的”, ”不”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是”、“是” ,“是”,“是”,“是”,“是”,“是”,“是”,“否”,“是”,“是”,“是”,“是”,“否”,“是”、“是”、“是”、“是”、“否”、“否”、“否”、“是”、“是”、“是”、“是”、“是”、“是” ,“是”,“否”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是”,“是的”, ”是”、“是”、“是”、“是”、“是”、“是”、“是”、“否”、“是”、“是”、“是”、“是”、“是” ,“是”,“是”,“是”,“是”,“否”,“是”,“否”,“否”,“是”,“是”,“是”,“否”,“是”、“否”、“是”、“是”、“否”、“是”、“是”、“是”、“否”、“否”、“否”、“否”、“否” , “否”, “是”, “是”, “否”, “否”, “否”, “是”, “是”, “否”, “是”, “是”, “否”, “不”、“是”、“否”、“是”、“否”、“否”、“是”、“是”、“是”、“否”),number.simp = c(1.5, 1.5, 1.5, 1.5, 1.5, 1.5 , 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 2, 2, 2, 1.5 , 1.5, 1.5, 1.5, 1.5, 1.5, 1, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5 , 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2, 2, 2, 1 , 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1, 1, 1, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 2.5, 2.5 , 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1, 1, 1, 1, 1.5, 1.5, 1, 1.5, 1.5 , 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 2, 2, 2, 1。5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 1, 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1.5, 1.5, 1.5, 1.5, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 1.5, 1.5, 2, 2, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 1.5, 2.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2, 2, 2, 1.5, 1.5, 2, 2, 2, 1.5, 1.5, 2.5, 2.5, 2.5, 2, 2, 1.5, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 1.5)), row.names = c(NA,-332L), 类 = c("tbl_df", "tbl", "data.frame"))
r - 如何使用 ggplot 制作条形图,其中 x 轴使用多列?
我正在尝试使用多个列名作为条形图中的 x 轴。因此,每个列名都是“因素”,它包含的数据就是它的计数。
我已经尝试过这样的迭代:
我尝试连接我想要显示的 x 值,aes(c(col1, col2))
但美学长度不匹配并且不起作用。
这两个都失败了(基于 aes 长度错误代码的预期),但希望您知道我的目标方向并可以提供帮助。
目标是有 4 个独立的组,每个组都有自己的箱线图(每个响应 1 个)。并且还要按周对它们进行刻面。
r - 在绘制多条线时调整组美学?
在执行以下 Shiny 代码时:
错误被抛出:
geom_path:每组仅包含一个观察值。需要调整群体审美吗?geom_path:每组仅包含一个观察值。需要调整群体审美吗?
我应该在美学上调整分组以避免上述错误吗?
这是我的数据:
r - 当 aes(group = ...) 但不是 aes(fill/shape = ...) 时,闪避误差条的位置错误
绘制误差线position = "dodge"
最近让我很头疼......奇怪的是,用美学shape
或fill
(不应该适用于误差线)来躲避它们似乎效果很好。然而,以美学方式躲避group
将酒吧置于意想不到的位置。我想知道这是否可能是一个 ggplot2 错误。
我喜欢在条形图或箱线图后面放置自定义误差线。有时我会为情节的不同元素赋予特殊的颜色。出于这个原因,我经常aes()
不包含在ggplot()
函数中,而是包含在 geoms 或 stats 中。
这是“放置良好”错误栏的示例:
这会产生警告Warning: Ignoring unknown aesthetics: fill
。使用aes(shape = supp)
打印相同的图。
我希望同样的情节,但没有通过用“组”(aes(group = supp)
)交换填充/形状的警告。这不会产生警告,但会产生非常意外的结果:
有人会对这种行为做出解释吗?不应该在闪避位置分组aes(group = ...)
并aes(fill = ...)
表现相似吗?