我已经创建了图像的 dft,在使用过滤器进行一些调整后,我想将其转换回真实图像,但是每次我这样做时它都会给我错误的结果..似乎它没有将其转换回来。
ForierTransform
并且createGaussianHighPassFilter
是我自己的函数,我使用的其余代码如下所示,用于反转回真实图像。
Mat fft = ForierTransform(HeightPadded,WidthPadded);
Mat ghpf = createGaussianHighPassFilter(Size(WidthPadded, HeightPadded), db);
Mat res;
cv::multiply(fft,ghpf,res);
imshow("fftXhighpass1", res);
idft(res,res,DFT_INVERSE,res.rows);
cv::Mat croped = res(cv::Rect(0, 0, img.cols,img.rows));
//res.convertTo(res,CV_32S);
imshow("fftXhighpass", res);
即使我不应用过滤器,我也无法反转 dft 结果......这是我的 dft 代码,我找不到任何样本将 dft 反转回正常图像..
Mat ForierTransform(int M,int N)
{
Mat img = imread("thumb1-small-test.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
split(complexImg, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat mag = planes[0];
mag += Scalar::all(1);
log(mag, mag);
// crop the spectrum, if it has an odd number of rows or columns
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
normalize(mag, mag, 0, 1, CV_MINMAX);
return mag;
}
好心的帮助
[编辑:在 mevatron 的帮助下找到解决方案后](下面是正确的代码)
Mat ForierTransform(int M,int N)
{
Mat img = imread("thumb1-small-test.jpg", CV_LOAD_IMAGE_GRAYSCALE);
Mat padded;
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg);
return complexImg;
}
Mat img = imread("thumb1-small-test.jpg",CV_LOAD_IMAGE_GRAYSCALE);
int WidthPadded=0,HeightPadded=0;
WidthPadded=img.cols*2;
HeightPadded=img.rows*2;
int M = getOptimalDFTSize( img.rows );
//Create a Gaussian Highpass filter 5% the height of the Fourier transform
double db = 0.05 * HeightPadded;
Mat fft = ForierTransform(HeightPadded,WidthPadded);
Mat ghpf = createGaussianHighPassFilter(Size(WidthPadded, HeightPadded), db);
Mat res;
cv::mulSpectrums(fft,ghpf,res,DFT_COMPLEX_OUTPUT);
idft(res,res,DFT_COMPLEX_OUTPUT,img.rows);
Mat padded;
copyMakeBorder(img, padded, 0, img.rows, 0, img.cols, BORDER_CONSTANT, Scalar::all(0));
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
split(res, planes);
magnitude(planes[0], planes[1], planes[0]);
Mat mag = planes[0];
mag += Scalar::all(1);
log(mag, mag);
// crop the spectrum, if it has an odd number of rows or columns
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
int cx = mag.cols/2;
int cy = mag.rows/2;
normalize(mag, mag, 1, 0, CV_MINMAX);
cv::Mat croped = mag(cv::Rect(cx, cy, img.cols,img.rows));
cv::threshold(croped , croped , 0.56, 1, cv::THRESH_BINARY);
imshow("fftPLUShpf", mag);
imshow("cropedBinary", croped);
它现在可以显示手指的脊谷,并且可以在阈值方面进行更多优化。