与我的工作相关(这里使用带有 adjacency_list 的泛型类型)我现在正在测试执行以下操作的简单代码:
- 初始化 boost-mpi 环境
- 将图从文件加载到分布式 adjacency_list
- 最后在每台机器上对其执行 2 个简单操作:计算边数并计算聚类系数。
这是代码:
#include "Common.h"
#include "GraphFileReader.h"
#include "GraphNeighbors.h"
#include <boost/graph/metis.hpp>
#include <boost/mpi/environment.hpp>
#include <boost/mpi/communicator.hpp>
#include <time.h>
int main(int argc, char *argv []){
// Start mpi enviroment
boost::mpi::environment env(argc, argv);
boost::mpi::communicator world;
// Create the graph
GraphFileReader *graphFileReader;
undirectedAdjacencyList graph;
if(process_id(graph.process_group()) == 0){
// Load the graph's path
graphFileReader = new GraphFileReader(argv[1]);
// Read the graph file and adds the vertices and edges
graphFileReader->loadGraph(graph);
}
// Wait until the process 0 has finished loading the graph
world.barrier();
synchronize(graph.process_group());
GraphNeighbors graphNeighbors;
// Now each machine should process it's own graph piece
graphNeighbors.countEdges(graph);
graphNeighbors.clusteringCoefficient(graph);
// Wait for the other processes before finishing
world.barrier();
synchronize(graph.process_group());
cout << "\n process: " << world.rank() <<" finishing\n" << std::endl;
结果如下:
graphs: /usr/include/boost/graph/distributed/adjacency_list.hpp:2679:
std::pair<typename boost::adjacency_list<OutEdgeListS, boost::distributedS<ProcessGroup,
InVertexListS, InDistribution>, DirectedS, VertexProperty, EdgeProperty, GraphProperty,
EdgeListS>::out_edge_iterator, typename boost::adjacency_list<OutEdgeListS,
boost::distributedS<ProcessGroup, InVertexListS, InDistribution>, DirectedS,
VertexProperty, EdgeProperty, GraphProperty, EdgeListS>::out_edge_iterator>
boost::out_edges(typename boost::adjacency_list<OutEdgeListS,
boost::distributedS<ProcessGroup, InVertexListS, InDistribution>, DirectedS,
VertexProperty, EdgeProperty, GraphProperty, EdgeListS>::vertex_descriptor, const
boost::adjacency_list<OutEdgeListS, boost::distributedS<ProcessGroup, InVertexListS,
InDistribution>, DirectedS, VertexProperty, EdgeProperty, GraphProperty, EdgeListS>&) [with
OutEdgeListS = boost::vecS, ProcessGroup = boost::graph::distributed::mpi_process_group,
InVertexListS = boost::vecS, InDistribution = boost::defaultS, DirectedS =
boost::undirectedS, VertexProperty = Node, EdgeProperty = boost::no_property, GraphProperty
= boost::no_property, EdgeListS = boost::listS]: Assertion `v.owner == g.processor()' failed.
_________________________________________________________________
I'm process: 0
I'm process: 1
Number of edges: 4
0.37694 milliseconds
Number of edges: 2
0.16284 milliseconds
rank 1 in job 1 compute-1-4_49342 caused collective abort of all ranks
exit status of rank 1: killed by signal 6
_________________________________________________________________
Epilogue Args:
Job ID: 138573.tucan
User ID: ***
Group ID: ***
Job Name: mpiGraphs.job
Resource List: 5746
Queue Name: ncpus=1,neednodes=2:ppn=2,nodes=2:ppn=2
Account String: cput=00:00:00,mem=420kb,vmem=13444kb,walltime=00:00:02
Date: Thu Mar 1 14:28:19 CET 2012
_________________________________________________________________
另一方面,只有一台机器的执行工作完美:
I'm process: 0
Number of edges: 6
8.46696 milliseconds
The network average clustering coefficient is: 0.53333
0.12708 milliseconds
process: 0 finishing
我的导师和我认为这可能是因为一台机器结束而另一台仍在执行它的操作,所以我们添加了同步和屏障(我实际上不知道两者之间的区别,所以我测试了几个相同的组合结果)。
如果您需要其余代码(Common.h、GraphFileReader 或 GraphNeighbors),我可以将其上传并在此处发布链接以避免发布过大的帖子。