这个问题可以指任何能够从一组多项式(Mathematica、Singular、GAP、Macaulay2、MatLab 等)计算 Groebner 基的计算机代数系统。
我正在使用一个超定的多项式系统,其中完整的 groebner 基太难以计算,但是能够打印出找到的 groebner 基元素对我来说很有价值,这样我就可以知道一个特定的多项式在 groebner 基中。有没有办法做到这一点?
这个问题可以指任何能够从一组多项式(Mathematica、Singular、GAP、Macaulay2、MatLab 等)计算 Groebner 基的计算机代数系统。
我正在使用一个超定的多项式系统,其中完整的 groebner 基太难以计算,但是能够打印出找到的 groebner 基元素对我来说很有价值,这样我就可以知道一个特定的多项式在 groebner 基中。有没有办法做到这一点?
如果您自己实现 Buchberger 算法,那么您可以简单地打印出找到的元素。
如果您有 Mathematica,您可以使用此代码作为您的起点。
https://www.msu.edu/course/mth/496/snapshot.afs/groebner.m
请参阅函数 BuchbergerSteps。
由于 Buchberger 算法的工作方式(例如,参见Wikipedia或IVA),您可以通过打印中间结果获得的部分结果不能保证构成 Gröbner 基。
根据您的最终目标,您可能想尝试使用理想三角化算法,例如 Ritt-Wu 的算法(参见IVA或Shang-Ching Chou 的书)。这有点类似于线性代数中的行梯形简化,您可以随时中断算法以获得部分简化的多项式方程组。