我想用一个考虑使用 CUDA Thrust'sthrust::transform
和 of cuBLAS
's的例子来更新上面的答案cublas<t>dgmm
。我跳过了缩放因子的计算alpha
,因为这已经在
使用 CUDA 减少矩阵行
和
使用 CUDA 减少矩阵列
下面是一个完整的例子:
#include <thrust/device_vector.h>
#include <thrust/reduce.h>
#include <thrust/random.h>
#include <thrust/sort.h>
#include <thrust/unique.h>
#include <thrust/equal.h>
#include <cublas_v2.h>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
/**************************************************************/
/* CONVERT LINEAR INDEX TO ROW INDEX - NEEDED FOR APPROACH #1 */
/**************************************************************/
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T> {
T Ncols; // --- Number of columns
__host__ __device__ linear_index_to_row_index(T Ncols) : Ncols(Ncols) {}
__host__ __device__ T operator()(T i) { return i / Ncols; }
};
/***********************/
/* RECIPROCAL OPERATOR */
/***********************/
struct Inv: public thrust::unary_function<float, float>
{
__host__ __device__ float operator()(float x)
{
return 1.0f / x;
}
};
/********/
/* MAIN */
/********/
int main()
{
/**************************/
/* SETTING UP THE PROBLEM */
/**************************/
const int Nrows = 10; // --- Number of rows
const int Ncols = 3; // --- Number of columns
// --- Random uniform integer distribution between 0 and 100
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist1(0, 100);
// --- Random uniform integer distribution between 1 and 4
thrust::uniform_int_distribution<int> dist2(1, 4);
// --- Matrix allocation and initialization
thrust::device_vector<float> d_matrix(Nrows * Ncols);
for (size_t i = 0; i < d_matrix.size(); i++) d_matrix[i] = (float)dist1(rng);
// --- Normalization vector allocation and initialization
thrust::device_vector<float> d_normalization(Nrows);
for (size_t i = 0; i < d_normalization.size(); i++) d_normalization[i] = (float)dist2(rng);
printf("\n\nOriginal matrix\n");
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "]\n";
}
printf("\n\nNormlization vector\n");
for(int i = 0; i < Nrows; i++) std::cout << d_normalization[i] << "\n";
TimingGPU timerGPU;
/*********************************/
/* ROW NORMALIZATION WITH THRUST */
/*********************************/
thrust::device_vector<float> d_matrix2(d_matrix);
timerGPU.StartCounter();
thrust::transform(d_matrix2.begin(), d_matrix2.end(),
thrust::make_permutation_iterator(
d_normalization.begin(),
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Ncols))),
d_matrix2.begin(),
thrust::divides<float>());
std::cout << "Timing - Thrust = " << timerGPU.GetCounter() << "\n";
printf("\n\nNormalized matrix - Thrust case\n");
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix2[i * Ncols + j] << " ";
std::cout << "]\n";
}
/*********************************/
/* ROW NORMALIZATION WITH CUBLAS */
/*********************************/
d_matrix2 = d_matrix;
cublasHandle_t handle;
cublasSafeCall(cublasCreate(&handle));
timerGPU.StartCounter();
thrust::transform(d_normalization.begin(), d_normalization.end(), d_normalization.begin(), Inv());
cublasSafeCall(cublasSdgmm(handle, CUBLAS_SIDE_RIGHT, Ncols, Nrows, thrust::raw_pointer_cast(&d_matrix2[0]), Ncols,
thrust::raw_pointer_cast(&d_normalization[0]), 1, thrust::raw_pointer_cast(&d_matrix2[0]), Ncols));
std::cout << "Timing - cuBLAS = " << timerGPU.GetCounter() << "\n";
printf("\n\nNormalized matrix - cuBLAS case\n");
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix2[i * Ncols + j] << " ";
std::cout << "]\n";
}
return 0;
}
Utilities.cu
和Utilities.cuh
文件在此处保留,此处省略。TimingGPU.cu
和在这里TimingGPU.cuh
维护,也被省略了。
我在 Kepler K20c 上测试了上面的代码,结果如下:
Thrust cuBLAS
2500 x 1250 0.20ms 0.25ms
5000 x 2500 0.77ms 0.83ms
在cuBLAS
时间上,我不包括cublasCreate
时间。即使这样,CUDA Thrust 版本似乎更方便。