I'm running memory-intensive parallel computations in MATLAB on a 64-core NUMA machine under Windows 7, 8 cores per socket. I'm using parallel computing toolbox to do that. I've noticed a very strange cpu load pattern: then running say 36 parallel MATLABs, the cores on the 1st socket are fully loaded, 2nd socket is almost fully loaded too, third socket is about 50% and so on. The last socket is usually almost completely free and doing nothing. Running more than 12 parallel workers simultaneously seem to very adversely affect performance of all workers.
I tried to experiment with cpu affinity, pinning different workers to different cores. While it helps in simple tests (i.e. cpu load pattern becomes uniform across all cores), it doesn't help in our real-life memory-intensive computations.
I suspect the problem is with memory locality. I.e. all memory is allocated on 1st and 2nd sockets. This would explain strange cpu load: OS tires to run computational threads closer to the data. But I don't know neither how to confirm this suspicion directly, nor how to fix it, if it's true.
I use maxNumCompThreads(4) in all my parallel workers, if that's important. Hyperthreading is off.